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Abstract— Deterministic approaches to model validation for
robust control are investigated. In common deterministic model
validation approaches, a trade-off between disturbances and
model uncertainty is present, resulting in an ill-posed problem.
In this paper, an approach to model validation is presented
that attempts to remedy the ill-posedness. By employing accu-
rate, non-parametric, deterministic disturbance models in con-
junction with enforcing averaging properties of deterministic
disturbances, a novel framework enabling model validation for
robust control is obtained. The approach results in a realistically
estimated model uncertainty and a disturbance model, and is
illustrated in a simulation example.

I. INTRODUCTION

Model validation is a crucial step in any modeling proce-

dure, since a model is useless if it has not been confronted

with measurement data from the true system. In classical

approaches to model validation, where the goal of the model

is prediction, simulation, etc., the model residual is entirely

attributed to additive disturbances. Such disturbances are of-

ten represented in a stochastic framework, since this provides

an accurate description for many realistic disturbances [1].

If the goal of the model is subsequent control design, then

low complexity models are often desirable. In particular, the

complexity of the resulting controller commonly depends on

the complexity of the model. The model should thus only

represent relevant phenomena. Indeed, a robust feedback

control design can cope with large systematic modeling

errors in certain frequency ranges [2], e.g., caused by under-

modeling. Deterministic perturbation models, e.g., H∞-norm

bounded perturbations, are the most natural representation

for systematic modeling errors, since the nominal model

residual, e.g., due to undermodeling, depends deterministi-

cally on the input signal.

The development of robust control design methodolo-

gies [3], [4], [2] has led to deterministic model validation

approaches, both in the time domain [5] and in the fre-

quency domain [6], [7], [8], [9] where besides deterministic

perturbation models, deterministic disturbance models are

employed. Such disturbance models typically allow unknown

but bounded disturbances, as opposed to stochastic dis-

turbance descriptions in the classical approaches. In the

deterministic model validation problem, the uncertain model

is invalidated if there does not exist a perturbation model

and disturbance signal in a certain bounded set such that

the uncertain model can reproduce the measurement data.
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Otherwise, the uncertain model is not invalidated by the

measurement data.

Although the deterministic model validation problem de-

livers a perturbation model that is compatible with robust

control design methodologies, a straightforward application

of the deterministic model validation problem leads to de-

batable results. In particular, the nominal model residual can

be attributed either to model uncertainty or to disturbances,

hence a trade-off is present, see [10], [11] for the time

domain case and [12] for the frequency domain case.

Presence of a trade-off in the model validation problem

implies that the problem is ill-posed. Conceptually, dis-

turbances are signals that are independent of the system

input. Otherwise, these signals are the result of input-output

behavior and should be considered as model uncertainty. In

a deterministic model validation framework, deterministic

disturbances are allowed to reproduce the model residual

even if the residual depends on the input, resulting in overly

optimistic results. Pursuing a worst-case, i.e., pessimistic,

approach to model validation [13], which is closely related

to identification in H∞ [14], does not resolve the issue, since

in this case the disturbance will work perfectly against the

input and hence is still dependent on the input. Set-based

deterministic white noise descriptions [15] provide a means

to properly define disturbances. However, the approach

is computationally intensive and hence may be infeasible

for large data sets, as is typically encountered in model

validation. Employing deterministic perturbation models in

conjunction with stochastic disturbance models provides an

opportunity to enforce independence between inputs and

disturbances in a straightforward manner, yet a mixed deter-

ministic/probabilistic approach is computationally hard, e.g.,

[16]. The present paper investigates the deterministic model

validation problem in further detail. For related model vali-

dation and model error modeling approaches in a stochastic

framework, see [17] and references therein.

The main contribution of the present paper is a model

validation approach that attempts to resolve the ill-posedness

of deterministic model validation approaches. The presented

approach addresses the trade-off that is present in com-

mon deterministic model validation tools by appropriately

defining the notion of a disturbance. Specifically, a nonpara-

metric, deterministic disturbance modeling approach in the

frequency domain is proposed in conjunction with averaging

properties of the disturbances with respect to the input signal.

The key idea is to consider an appropriate input design, i.e.,

periodic signals are employed. The advantages of periodic

input signals are well established in a stochastic frame-

work [18], [1], yet not in a deterministic model validation
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framework. The approach is applicable to MIMO open-loop

and closed-loop systems by employing a coprime factor-

based approach. Coprime factor-based approaches have been

presented for SISO and SIMO systems in [8], [19], the

present approach extends the results to the MIMO case.

The paper is organized as follows. In Section II the model

validation problem is stated. Section III presents an approach

for nonparametric deterministic disturbance modeling. Mild

stochastic assumptions are imposed that are appropriate for

many realistic systems. Section IV establishes the inde-

pendence properties between input signals and disturbances

by suitable input design. Section V briefly describes the

validation test. Section VI contains a simulation example,

illustrating the results in the paper. Finally, conclusions are

drawn in Section VII.

Notation. H∞ denotes the Hardy space of L∞(δD) func-

tions analytic in DE , L∞(δD) denotes the space of bounded

functions on δD, where ‖F‖∞ := ess supω∈R
σ̄(F (ejω)),

D := {z|z < 1} δD := {z|z = 1}, and DE := {z|z > 1}.

In addition, the prefix R denotes real-rational and B denotes

the open unit ball in a normed space. The transfer function

of a system F is denoted by its Z-transform F (z) =
∑∞

k=−∞ f(k)z−k. The discrete Fourier transform of a signal

x is given by XN (ω) = 1√
N

∑N

t=1 x(t)ejωt, with DFT grid

Ω =
{

2πp

N
, p = 0, 1, . . . , N − 1

}

. The argument ω is often

omitted to facilitate the notation. The upper linear fractional

transformation (LFT) is given by Fu(M,∆) = M22 +
M21∆(I−M11∆)−1M12. All signals and systems evolve in

discrete time with a normalized sampling frequency h = 1,

generalization to continuous time systems is straightforward

by imposing suitable assumptions.

II. MODEL VALIDATION PROBLEM

The model validation setup considered in this paper is

depicted in Figure 1. Mo denotes the true system with

manipulated input w ∈ R
nw and measured output zm ∈ R

nz ,

where zm is affected by disturbances, including unmeasured

inputs and measurement noise. It is assumed that the true

plant can be represented by a Linear Time Invariant (LTI)

nominal model and an LTI perturbation model. The uncertain

model is represented by

z = Fu(M̂, ∆u)w + v, (1)

where M̂ contains the nominal plant model P̂ , model uncer-

tainty structure, and weighting filters [4]. In addition, ∆u

is an H∞-norm bounded perturbation block representing

model uncertainty, i.e., ‖∆u‖∞ < γ, either structured or

unstructured, i.e., ∆u ∈ ∆u, where ∆u is defined as in [3].

The disturbance model is represented by v ∈ R
nz . L∞-norm

bounded deterministic disturbances are considered, which are

elaborated on in more detail in Section III.

The following Model Validation Optimization Problem

(MVOP) is the main problem that is addressed in this paper.

Problem 1 (MVOP) Given the uncertain model (1), a

norm-bounded v, and measurements w, zm, determine the

minimum value of γ such that the uncertain model is con-

sistent with the data.

∆u

M̂

Mo

w z

zm

ε

v

true

model
−

Fig. 1. Model validation setup.

In the deterministic model validation problem, the uncertain

model (1) is consistent with the data if there exists a ∆u and

v in a bounded set such that the residual ε equals zero.

The motivation to solve the MVOP in the frequency

domain is threefold: 1) a frequency response-based approach

using a discrete frequency grid provides a necessary and

sufficient test for validation using H∞-norm bounded per-

turbations, see Section V-A, 2) a frequency response-based

approach allows usage of accurate nonparametric disturbance

models, which do not require a cumbersome parametriza-

tion step, and 3) frequency response-based problems result

in constant matrix problems, whereas the MVOP involves

operators that are more difficult to handle computationally. In

the frequency response-based approach, an uncertain model

is invalidated if it is inconsistent with the data for at least

one ωi ∈ Ω, otherwise it is not invalidated. The Frequency

Domain Model Validation Optimization Problem (FDMVOP)

amounts to solving the MVOP at each frequency and is

defined as follows.

Problem 2 (FDMVOP) Given the uncertain model (1), an

L∞ norm-bounded disturbance model V (ωi), and measure-

ments W (ωi), Zm(ωi), determine the minimum value of

γ(ωi), γ(ωi) = σ̄(∆u(ωi)) such that the uncertain model

is consistent with the data.

The FDMVOP is solved by performing a bisection over

γ(ωi) and solving a series of Frequency Domain Model

Validation Decision Problems (FDMVDPs).

Problem 3 (FDMVDP) Given the uncertain model (1), an

L∞ norm-bounded disturbance model V (ωi), measurements

W (ωi), Zm(ωi), and γ(ωi), γ(ωi) = σ̄(∆u(ωi)), is the

uncertain model consistent with the data at frequency ωi?

A solution to Problem 3 is presented in Section V. First,

several assumptions are imposed to ensure that the model

validation problem is well-defined.

Well-posedness of the model validation problem requires

well-posedness of the LFT Fu(M̂, ∆u), which is assumed

throughout and formalized in the following assumption.

Assumption 4 det(I−M̂11∆u) 6= 0∀∆u∈ ∆u, ‖∆u‖∞< γ.

In addition, the following assumption ensures that the model

uncertainty affects the relevant model outputs.

Assumption 5

Zm − M̂22W ∈ Im
(

M̂21∆u(I − M̂11∆u)−1M̂12

)

for a

certain ∆u ∈ ∆u.
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Both Assumptions 4 and 5 are ensured if an appropriate

perturbation model structure is selected, e.g., additive struc-

tures for open-loop systems [4] and dual-Youla structures for

closed-loop systems [20]. The following assumption ensures

that the model validation problem is not trivially solved.

Assumption 6 zm − M̂22w 6= 0.

III. DISTURBANCE MODEL

In this section, the disturbance model, i.e., the term v in (1)

is discussed in more detail. The motivation for considering

nonparametric disturbance models is twofold: 1) the model

validation problem is performed at a discrete frequency

grid ωi ∈ Ωval, hence a nonparametric model suffices, and

2) nonparametric models can be estimated straightforwardly

and accurately from data, since a parametrization, model

order selection, and numerical optimization step are not

required, e.g., compared to [1].

A deterministic model validation procedure requires a

deterministic disturbance model. Estimating a deterministic

disturbance model from data requires deterministic prior

assumptions regarding the data. Selection of accurate deter-

ministic assumptions regarding signals is difficult in many re-

alistic situations, e.g., outliers are not allowed in such cases.

Indeed, in many realistic situations, stochastic disturbance

models are appropriate descriptions for disturbances, see also

[1], [18], especially if the measurement time is large.

The nonparametric disturbance model is estimated based

on mild stochastic assumptions regarding the time domain

signals. These assumptions lead to a frequency domain

disturbance model with certain favorable properties. In par-

ticular, the stochastic disturbance model can be converted

nonconservatively to a deterministic disturbance model by

selecting a suitable confidence interval.

The theoretical stochastic disturbance model is described

in Section III-A, the conversion to a deterministic disturbance

model is the topic of Section III-B. Estimating disturbance

models from finite time data is discussed in Section III-C.

A. Theoretical stochastic disturbance model

Consider the stochastic disturbance model

vs = Hoe, (2)

where e ∈ R
nz is a sequence of independent, identically

distributed random vectors with zero mean, unit covariance,

and bounded moments of all orders, Ho ∈ RHnz×nz

∞ ,

and vs ∈ R
nz represents a stochastic disturbance assumed

additive to the true plant output. Under this assumption, the

following theorem applies, where Vs,N (ejωi) denotes the

DFT of vs, see Section I.

Theorem 7 Consider vs given by (2). Then, for N → ∞,

Vs,N (ejωi) converges in distribution to
{

Nc(0, Cvs
(ωi)) ωi 6= kπ, k ∈ Z

N (0, 2Cvs
(ωi)) ωi = kπ, k ∈ Z,

(3)

in addition, Vs,N (ejωi) and Vs,N (ejωj ) are asymptotically

independent for i 6= j, ωi, ωj ∈ [0, π].

Proof: The proof is based on the central limit theorem,

see [21, Theorem 4.4.1] and [18, Theorem 14.25].

Throughout, only the case ωi 6= kπ, k ∈ Z is considered for

notational convenience. In (3), Nc(0, Cv(ωi)) denotes the

circular complex normal distribution, which is defined next.

Definition 8 (Circular complex normal distribution)

[22] For a complex random vector z, the circular complex

normal distribution Nc(mz, Cz) is defined by its mean

mz = E{z}, covariance matrix Cz = E{(z−mz)(z−mz)
∗},

Cz = C∗
z ≥ 0, and the property

E{(z − mz)(z − mz)
T } = 0. (4)

Throughout, the nondegenerate case is considered, i.e., Cz >

0. To interpret the circularity property (4), write z = zr +jzi

and assume mz = 0. Then, (4) becomes

E{zrz
T
r − ziz

T
i + j(zrz

T
i + (zrz

T
i )T )} = 0, (5)

implying that the autocovariance of the real and imaginary

part of z are equal and the cross-covariance between the real

and imaginary part of z is skew-symmetric. Skew-symmetry

implies the real and imaginary parts of each element z

are uncorrelated, however, correlation between the real and

imaginary part of distinct elements of z may be present.

Due to the circularity property (4), correlation between the

elements of z may be removed by introducing the coordinate

transformation

z̃ = T ∗
z z. (6)

In (6), Tz follows from the eigenvalue decomposition Cz =
TzΣzT

∗
z , where TzT

∗
z = T ∗

z Tz = I and Σz is a diagonal

matrix. As a result,

E{z̃} = T ∗
z mz, E{(z̃ − mz̃)(z̃ − mz̃)

∗} = Σz, (7)

hence the elements of z̃ are independent, circularly complex

normally distributed random variables. The following lemma

regarding circularly complex normally distributed random

variables is useful for converting the stochastic disturbance

model to a deterministic disturbance model in Section III-B.

Lemma 9 Let z be a circular complex random variable, i.e.,

z ∈ Nc(mz, Cz), mz ∈ C, Cz ∈ R, and α ∈ [0, 1). Then,

P(|z − mz| <

√

1
2
Czχ

2
2(α)) = α, (8)

Proof: Suppose mz = 0 without loss of generality, then

the result follows by using the fact E{zrz
T
r } = E{ziz

T
i } =

1
2
E{zz∗} and properties of real-valued bivariate normal and

χ2 distributions.

B. Deterministic disturbance model

Circularity of the theoretical stochastic disturbance model

in Theorem 7 in conjunction with Lemma 9 provides an

opportunity to accurately convert the stochastic model into a

deterministic one. For each ωi ∈ Ω, introduce the coordinate

transformation

Ṽs,N (ejωi) = T ∗
V (ωi)Vs,N (ejωi), (9)
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where T ∗(ωi) is obtained from an eigenvalue decomposition

of Cvs
(ωi)) for each ωi. As a result of the transformation,

Ṽs,N (ejωi) ∈ Nc(0,Σs,N (ωi)), (10)

where Σs,N = diag(λ1, λ2, . . . , λnv
). Given a probability

level α ∈ [0, 1), let

¯̃
Vq(ωi) :=

√

1
2
λq(ωi)χ2

2(α)) (11)

and let
¯̃
V (ωi) be a matrix with the qth diagonal element

equal to
¯̃
Vq(ωi), q = 1, 2, . . . , nv . In addition, define the

block structure

∆v =
{

diag(δv,1, δv,2, . . . , δv,nz
)|δv,q ∈ C, q = 1, . . . , nz

}

.

(12)

Then, Ṽ(ωi)1 constitutes a deterministic L∞ norm-bounded

disturbance model in the transformed coordinates, where

Ṽ(ωi) =
{

∆v
¯̃
V (ωi)|∆v ∈ B∆v

}

, (13)

where 1 denotes a vector with all elements equal to one. In

the original coordinates, V(ωi)1 constitutes a deterministic

L∞ norm-bounded disturbance model, where

V(ωi) =
{

TV (ωi)∆v
¯̃
V (ωi)|∆v ∈ B∆v

}

. (14)

This disturbance model (14) is computed for each frequency

ωi ∈ Ωval and is employed in the model validation procedure

as discussed in the subsequent sections. Note that due to the

conversion from stochastic to deterministic bounds, V (ωi) ∈
V(ωi)1 with probability α. In addition, note that correla-

tion between different elements and different frequencies of

V (ωi) is allowed. However, in Section IV, it is shown that

the disturbance averages out, hence the optimism decreases

with increasing measurement time.

C. Estimating nonparametric disturbance models

The development of the disturbance model in the pre-

ceding sections requires knowledge of Cvs
(ωi), ωi ∈ Ωval.

Assuming vs is associated with the output, zm is given by

zm = Mow + vs. (15)

The approach to estimate the statistical properties of vs

is to keep w constant during repeated experiments. Then,

the deterministic contribution Mow in (15) is constant,

whereas vs will vary. Specifically, let nexp measurements

be performed, each with measurement time N . Applying the

DFT results in

Wr(ωi) = W (ωi), Zm,r(ωi), (16)

where r = 1, . . . , nexp and ωi ∈ Ω. In virtue of Theorem 7,

E{Vs(ωi)} = 0, leading to the estimator

Ĉvs
(ωi) =

1

nexp − 1

nexp
∑

r=1

(

(

Zm,r(ωi) − mZm,r
(ωi)

)

·
(

Zm,r(ωi) − mZm,r
(ωi)

)∗
)

(17)

mZm,r
(ωi) =

1

nexp

nexp
∑

r=1

Zm,r(ωi). (18)

The resulting estimate Ĉv(ωi), ωi ∈ Ω can be used di-

rectly in the deterministic disturbance model as discussed

in Section III-B. To obtain an efficient procedure for model

validation, a periodic input signal w is applied with period

N . Then, the estimator of (17) can be applied, where

nexp := nper, nper denoting the number of periods that

have been measured. The same data set can be used for

nonparametric disturbance modeling and model validation.

Transient effects are neglected, which is formalized in the

following assumption.

Assumption 10 If a periodic input w is applied with period

N , then it is assumed Mow is periodic with period N .

IV. AVERAGING IN A DETERMINISTIC FRAMEWORK

Optimal solutions to deterministic problems typically cor-

respond to situations where disturbances perfectly depend

on the input, e.g., [23]. However, the notion of disturbance

prohibits this dependence. In this section, an approach is

presented that ensures that the notion of disturbance is well-

defined in a deterministic framework.

Consider the uncertain model set of Figure 1. In the fre-

quency response-based model validation problem, the model

error ε is given by

ε = Zm − (Fu(M̂, ∆u)W + V1). (19)

In the frequency response-based model validation problem,

the goal is to determine the minimum γ such that

ε = 0 ∀ωi ∈ Ωval. (20)

In (19), the nominal model error εnom := Zm − M̂22W has

to be explained by the disturbance term (V ) and the model

uncertainty term (∆). The following proposition is the main

result of this section.

Proposition 11 Let W increase with a factor α. Then,

the part of the nominal modeling error εnom that can be

attributed to disturbances decreases by a factor α.

Proof: Omitted due to space limitations.

The key idea in a frequency response-based approach is

that besides increasing the amplitude in the time domain,

the size of W can be increased by applying a periodic input

signal. Specifically, suppose that w(t) is periodic with period

N and suppose that nper periods are applied. Then for ωi ∈
{

2πp

N
, p = 0, 1, . . . , N − 1

}

,

WnperN (ωi) =
1

√

nperN

nperN
∑

t=1

w(t)eiωit =
√

nperWN (ωi),

(21)

where WN (ωi) is the discrete Fourier transform of w(t)
over one period. Hence, in virtue of Proposition 11, the

model uncertainty averages out with a factor nper if the

measurement time is increased with a factor nper.
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V. VALIDATION TEST

A. Motivation for a frequency response based approach

In section II, inconsistency of the FDMVDP for at least

one frequency ωi ∈ Ω is a sufficient condition for model

invalidation. The following proposition reveals it is also

necessary, providing a strong motivation for a frequency

response based approach.

Proposition 12 A model is not invalidated, i.e., a ∆u ∈
RH∞, ‖∆u‖∞ < γ exists, if and only if the FDMVDP has

a positive answer ∀ωi ∈ Ωval and γ.

Proof: Only a sketch of the proof is given. (⇒) Follows

trivially from the definition of the H∞ norm. (⇐) Follows

by considering the bilinear transformation z = 1
wr

and the

right tangential Nevanlinna-Pick interpolation problem [24,

Chapter 18].

B. Solution to the FDMVDP

In this section, a solution to the FDMVDP is provided. The

FDMVDP amounts to verifying consistency of the model

with the data at each frequency ωi ∈ Ωval. The consistency

equation, see (19), becomes

0 = Zm −Fu(M,∆)W − Tv∆v
¯̃
V 1, (22)

where ∆v ∈ B∆v,∆u ∈ ∆u, σ̄(∆u) < γ. Straightforward

matrix manipulations reveal that (22) is equivalent to

Fu(M̄, ∆̄)α = 0, (23)

where

M̄ =





0 0 ¯̃
V 1

0 γM11 −M12W

−TV γM21 Zm − M22W



 (24)

∆̄ ∈ B∆̄ (25)

∆̄ =

{[

∆v 0
0 ∆u

]

∣

∣∆v ∈ ∆v,∆u ∈ ∆u

}

, (26)

and α ∈ C\0. The FDMVDP amounts to verifying whether

there exist nonzero signals that satisfy the LFT (23). This

resembles a Structured Singular Value (SSV) test [25],

however, instead of considering an autonomous feedback

interconnection, the LFT in (23) is implicit, i.e., it has

an output equal to zero and an input. This motivates the

following generalization of the SSV.

Definition 13 (Generalization of the SSV) [26] Given

complex matrices M,N of appropriate sizes, µ̄∆(M,N) is

defined as

µ̄∆(M,N) :=

(

min
∆

{σ̄(∆)|∆ ∈ ∆,Ker

(

I − ∆M

N

)

6= 0}
)−1

,

(27)

unless Ker

(

I − ∆M

N

)

6= 0,∀∆ ∈ ∆, in which case

µ̄∆(M,N) := 0.

This leads to the following necessary and sufficient test for

the FDMVDP, where X̄22 exists under Assumption 6.

Proposition 14 In the FDMVDP, the model is not in-

validated if and only if µ̄∆̄(M̄11 − M̄12X̄22M̄21, M̄21 −
X̄22M̄22M̄21) > 1, where X̄22 is a matrix that satisfies

X̄22M̄22 = I .

Proof: Proceeds along the same lines as in [26].

C. Algorithm

The computational complexity of µ̄∆̄(M,N) is compara-

ble to µ, which is proven to be NP-hard, see [27]. Upper and

lower bounds for µ̄∆̄(M,N) have been suggested in [26] and

are implemented in [28]. Testing whether the upper bound

µ̄u
∆̄

(N,M) ≤ 1 is a sufficient but not necessary condition for

model invalidation, hence testing whether µ̄u
∆̄

(N,M) > 1 is

an optimistic approach to model validation.

VI. EXAMPLE

In this section, an example is provided to illustrate 1) the

estimation of nonparametric disturbance models, 2) the FD-

MVOP, and 3) the averaging properties in an optimistic,

deterministic model validation.

The considered true system Mo and model M̂ , see (15)

and (1) are given by

Mo =

[

1 0.1
−0.1 1

]

, M̂ =

[

02×2 I2

I2 I2

]

, (28)

respectively, i.e., both are static MIMO systems and M̂ is

equipped with an unweighted, unstructured additive pertur-

bation model [4]. The true disturbance system Ho, see (2),

is dynamic and is defined by the state-space realization

Ho =





0.1 1 1
0.45 0.5 0.5
0.225 0.25 1.25



 . (29)

Problem 2 is considered for one frequency, i.e., ωi = 0.4π,

and one input direction, hence the input w is defined as

w(t) = 0.4
[

1 1
]T

sin (ωi) . (30)

To illustrate accuracy of the estimator (17), validity of

the circularity condition (4), and averaging properties

of the deterministic disturbance model, see Section IV,

the model validation problem is considered for nper =
{10, 100, 1000, 10000}.

The first step in the model validation problem is the esti-

mation of the nonparametric disturbance model for frequency

ωi. The 2-norm of the difference between the estimator (17)

and the the theoretical limit for N → ∞ of Cvs
(ωi), which is

given by Cvs
(ωi) = Ho(ωi)H

∗
o (ωi), is depicted in Figure 2.

It is concluded that the error of the estimator converges to

zero for increasing nper. Additionally, a similar estimator as

(17) is used to verify the circularity condition (4). The 2-

norm of the estimate is depicted in Figure 2. Clearly, the

circularity condition is satisfied for sufficiently large nper.

Next, the estimate Ĉvs
(ωi) is used to construct a determin-

istic disturbance model as described in Section III-B. Then,

the minimum value of γ is determined such that the uncertain

model is not invalidated by the data using the approach

in Section V. The results for varying nper are depicted in
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Fig. 2. Simulation results.

Figure 2. For nper = 10, γ = 0, implying that there are

no indications in the data set that the nominal model is

incorrect, i.e., the nominal model error can be fully attributed

to disturbances. By increasing nper, γ converges to the value

σ̄(Mo − M̂22) = 0.1 for this input direction. Hence, by an

appropriate input design in conjunction with a nonparamet-

ric, deterministic disturbance model, the disturbances average

out in an optimistic model validation setting.

VII. CONCLUSIONS

In this paper, model validation for robust control has

been investigated. Typical deterministic model validation ap-

proaches are ill-posed, since a trade-off between disturbances

and model uncertainty exists. The fundamental reason for this

trade-off is that the notion of a disturbance is poorly defined

in a deterministic framework. Instead, the main contribution

of this paper is a well-defined framework for determinis-

tic model validation by employing accurate, nonparametric,

deterministic disturbance models and enforcing averaging

properties of deterministic disturbances.

In the disturbance modeling, there is freedom with respect

to the confidence interval parameterized by α. A large value

of α results in more optimistic results. In realistic situations,

it is expected that the value of α is of little significance

and should be chosen close to 1. In particular, α close to

1 ensures that a poor data set does not result in an overly

large systematic modeling error. A high quality data set in

turn typically corresponds to a large time interval, allowing

the disturbance to average out, resulting in a realistically

estimated systematic model uncertainty.

As discussed in the example, model validation for multi-

variable systems results in a validated model for a particular

input direction. To validate the entire model, multiple vali-

dation experiments have to be performed such that the entire

input space is spanned [18]. In addition, the structure of ∆ in

the multivariable situation involves further research, since in

this case the uncertainty can be attributed to different blocks

of the perturbation model, introducing a trade-off.

The resulting frequency dependent value of the FDMVOP

can be used for uncertainty modeling by overbounding it

for each block of ∆u by a bistable transfer function. Con-

cluding, the procedure results in an accurate uncertainty and

disturbance model, suitable for subsequent control design.
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