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Abstract— In this paper, fractional orthonormal basis func-
tions which generalize the well-known fixed pole rational
basis functions are synthesized. For a range of non-integer
differentiation orders and under mild restrictions on the choice
of the basis poles, the synthesized basis functions are complete
in the space of functions which are analytic on the open
right-half plane and square-integrable on the imaginary axis.
This presents an extension of the completeness results for the
fractional Laguerre and Kautz bases to fractional orthonormal
bases with prescribed pole locations.

I. INTRODUCTION

The fractional calculus is a generalization of the traditional

calculus that leads to similar concepts and tools but with

a much wider applicability. The mathematical concept and

formalism of fractional calculus originate from the works of

Liouville [1] and Riemann [2]. For almost three hundred

years, it has remained an interesting, but abstract, math-

ematical concept. In recent years, fractional calculus has

been taken up by scientists and engineers and applied in an

increasing number of fields, namely in the areas of thermal

engineering, acoustics, electromagnetism, control, robotics,

viscoelasticity, diffusion, turbulence, signal processing, and

many others.

There are many linear systems with transfer functions that

can be represented as fractional differential systems, that is,

as functions G(s) which involve fractional powers of the

Laplace variable s. For instance, in the field of diffusion,

recent work [3] generalized diffusion equations based on

non-integer derivatives. In thermal diffusion, it was shown

in [4] that in a semi-infinite homogeneous medium the exact

solution of the heat equation links thermal flux to a half

order derivative of the surface temperature on which the

flux is applied. Expressing such a relation by the use of

rational models would require a much higher number of

parameters. Diffusion phenomena were investigated in semi-

infinite planar, spherical and cylindrical media in [5], [6], [7]

where it was shown that the involved transfer functions use

exponents of s that are multiples of 0.5. In electrochemical

diffusion of charges in the electrode and the electrolyte,

the most common physical model used in the literature is

the Randles model [8] which uses Warburg impedance that

involves an integrator of order 0.5. A fractal model for

anomalous losses in ferromagnetic materials was used in [9].

In rheology, stress in a viscoelastic material is proportional

to a non-integer derivative of deformation [10].
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In the area of control, the idea of using fractional systems

for modeling ideal loop transfer functions dates back to

Bode [11]. Recently, in [12] the advantages of a fractional

order controller known as commande robust d’ordre non

entier (CRONE) with respect to classical devices were

shown. Fractional proportional-integral-derivative controller

applications are reported in [13]. System identification with

fractional models was initiated in [14]. Recently, in [15]

fractional models were used to identify thermal diffusive

systems. An overview of system identification methods based

on fractional models is presented in [16].

In signal processing, non-integer derivative was used in

the synthesis of fractal noise [17]. The works of Mandelbrot

on fractals led to a significant impact in several scientific

areas. Presently, new themes are the object of active research

such as fractional delay filtering [18], fractional splines and

wavelets [19], [20], [21]. In a similar line of thought, the con-

cept of fractional Fourier transform [22] can be mentioned.

This tool has mostly been applied in the field of optics.

But, some applications to filtering, encoding, watermarking,

and phase retrieval have appeared in the literature on signal

analysis.

Of the greatest interest to the signal processing and control

engineering communities is the fact that the fractional sys-

tems have both short and long term memories. Some basic

properties of fractional systems such as stability [23], [24],

observability and controllability [25], the H2-norm [26], and

the H∞-norm [27] have been investigated over the last ten

years.

A fundamental idea in various areas of applied mathe-

matics, control theory, signal processing, and system anal-

ysis is that of decomposing (perhaps infinite dimensional)

descriptions of linear-time-invariant dynamics in terms of

an orthonormal basis. This approach is of greatest utility

when accurate system descriptions are achieved with only

a small number of basis functions. In recognition of this,

there has been much work [28], [29] over the past several

decades and, with renewed interest, more recently [30], [31],

[32], [33], [34] on the construction, analysis, and application

of rational orthonormal bases suitable for providing linear

system characterizations.

An important motivation for the consideration of orthonor-

mal parameterizations is for approximation purposes. In this

setting, a dominant question must arise as the quality of the

approximation. Pertaining to this, one of the most funda-

mental properties that might be required is completeness.

Formally, a model set A is complete in a space X if the

closure of the linear span of A under the norm on X equals

X .
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In Laguerre model structures, prior knowledge of the

relative stability of a transfer function is encoded in terms

of a single basis pole. In the case of systems for which

prior knowledge of a resonant mode exists, it is more

appropriate to employ two-parameter Kautz bases. The well-

known Laguerre and Kautz bases [31] are special cases of

the general orthonormal bases [30] where the basis poles

are again restricted to a finite set. In [33], [34], model sets

spanned by fixed pole orthonormal bases which generalize

the Laguerre, two-parameter Kautz, and general orthonormal

bases were investigated. These model sets were shown to

be complete in H2(Π), the space of functions which are

analytic on the open right-half plane denoted by Π and square

integrable on the imaginary axis, provided that the chosen

basis poles satisfy a mild condition. This generalization

enjoys increased flexibility of pole location. As a result,

a fewer number of basis functions may be used without

sacrificing model accuracy.

Intuitively, one is led to the conclusion that the Laguerre

functions can be extended to fractional differentiation orders

by simply allowing their differentiation orders to be positive

real numbers [35]. However, the classical Laguerre functions

are divergent whenever their differentiation orders are non-

integer [36]. The first complete fractional orthonormal basis,

the so-called fractional Laguerre basis, was synthesized in

[37]. This extension from the rational Laguerre basis to a

fractional one provides a new class of fixed denominator

models for system approximation and identification. A frac-

tional orthogonal Kautz basis, that happens to be complete

from the completeness of the fractional Laguerre functions

in [37], was synthesized in [38].

The purpose of the current paper is to generalize the

results in [37], [38] to fractional bases with infinitely many

prescribed poles subject to mild restrictions on the choice of

poles. This generalization is not straightforward. The key

idea in [32], [33], [34] in showing completeness of the

basis functions was to to re-parameterize the chosen model

structures into a new one with equivalent fixed poles, but for

which the basis functions are orthonormal in H2(Π). Then, it

was possible to derive analytic expressions for approximation

errors of the rational basis functions in terms of the Blaschke

products [39] formed by the basis poles. These analytic

expressions yielded necessary and sufficient conditions for

the completeness of the basis functions not only in H2(Π),
but also in many spaces. It was also possible to express each

basis function as a product of a Blaschke product with a first

order system.

This approach can not be utilized in the synthesis of fixed

pole fractional bases with infinitely many poles since frac-

tional analogs of the Blaschke products can not simply be de-

fined by inserting sγ in place of s due to the branch cut along

the negative real line. The deficiency in defining fractional

Blaschke products makes completeness study significantly

harder for the fractional rationals because the orthonormality

can not be employed either as an implementional tool or as

an analysis tool. The use of the conformal mapping technique

in [37] is limited only to the synthesis of fractional Laguerre

bases.

This paper is organized as follows. In § II, mathematical

background on the fractional derivatives and the fractional

transfer functions is briefly reviewed. In § III, complete-

ness results for the synthesized fractional basis functions

with prescribed poles are presented. Orthonormalization and

calculation of impulse-responses of the synthesized basis

functions as well as the completeness proofs can be found

in [40]. In § IV, a numerical example is used to illustrate

the basis synthesis scheme and the impulse responses of the

synthesized basis functions are computed. § V outlines future

research directions and concludes the paper.

A. Notation

The field of the real and the complex numbers are denoted

respectively by R and C. The set of the positive numbers

and its complement in R are respectively denoted by R+

and R−. The real and the imaginary parts of z are denoted

respectively by Re(z) and Im(z). The upper and the lower

open half planes are denoted respectively by Π2 and Π4,

Π1 = Π, and Π3 denotes the open left half plane.

Let Cγ denote the open sector defined by

Cγ = {s ∈ C : |arg(s)| < π [1− (γ/2)]} (0 < γ < 2).

Thus, C0 = C −R− and C1 = Π. As γ increases, Cγ de-

creases. Let Dε(z) denote the open disk with center z ∈ C

and radius ε > 0.

he Hardy spaces of functions F(s) analytic on Π and such

that ‖F‖p < ∞ (0 < p ≤ ∞) are denoted by Hp(Π) where

‖F‖p =

{
[ 1

2π supx>0

∫ ∞
−∞ |F(x + jy)|p dy]

1
p , p 6= ∞

sups∈Π |F(s)|, p = ∞.

II. FRACTIONAL LINEAR SYSTEMS

In this section, we will review definitions and results of

fractional calculus pertinent to our analysis. The readers are

referred to [41] and the references therein for details.

A. Fractional differential equations

The inverse Laplace transform of F(s) denoted by f (t) is

defined by

f (t) =
1

2π j

∫ σ+ j∞

σ− j∞
F(s)est ds (t > 0) (1)

where σ ∈R is inside the region of convergence. It is related

to F(s) by the Laplace transformation:

F(s) =

∫ ∞

0
f (t)e−st dt. (2)

Note the following relation:
∫ ∞

0
D

γ
d f (t)e−st dt = sγ F(s) for Re(s) > 0 (3)

where D
γ
d f (t) denotes the (direct) Grünwald-Letnikov frac-

tional derivative of order γ of f (t) [42].

The multi-valued function sγ becomes an analytic function

in the complement of its branch cut line as soon as a branch
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cut line, i.e. R−, is specified. This choice is made for a causal

system.

Let us define a linear system through a fractional differ-

ential equation in the form:

N

∑
n=0

anD
γn

d y(t) =
M

∑
m=0

bmD
γm

d u(t) (4)

where the differentiation orders, γn, are all positive, and

aN ,bM 6= 0. Applying (2) to (4) and using (3), we obtain

the transfer function of the system:

F(s) =
∑M

m=0 bmsγm

∑N
n=0 ansγn

. (5)

The transfer function F(s) is said commensurable of order

γ ∈ R+ if γm, γn in (5) are integer multiples of γ , and γ is the

largest number with this property. Thus, a commensurable

transfer function F is a rational function in sγ ; and assuming

N > M, by partial fraction expansion it can be decomposed

as

F(s) =
L

∑
k=1

nk

∑
ℓ=1

αk,ℓ

(sγ + λk)ℓ
(6)

for some complex numbers αk,ℓ, λk, and positive integers nk

where ∑L
k=1 nk = N.

B. Stability of sγ -rational functions

A system with transfer function G(s) is said to be stable if

G ∈ H∞(Π). This means that the system defined by (4) maps

bounded energy inputs u(t) to bounded energy outputs y(t).
In fact, if this happens then (4) maps magnitude bounded

inputs to magnitude bounded outputs as well, that is, the

fractional linear system (4) is bounded-input/bounded-output

(BIBO) stable.

The stability of the fractional system defined by (4) with

γk = kγ for all k can be checked by checking γ and the

arguments of λk denoted by arg(λk) in the partial fraction

expansion of F(s). Matignon [23] showed that the fractional

system defined by (4) with γk = kγ for all k is BIBO stable

if and only if for all k,

0 < γ < 2 and |arg(λk)| < π(1− γ

2
). (7)

Henceforth, we will restrict γ to the interval (0,2).

C. Fractional Orthonormal Bases

The partial fraction expansion (6) of a fractional linear

system (4) with γk = kγ for all k suggests approximating

arbitrary functions in H2(Π) by linear combinations of the

functions (sγ + λk)
−ℓ, 1 ≤ ℓ ≤ nk; k ≥ 1. There are several

degrees of freedom and constraints in doing so. First of all,

the stability constraint (7) has to be taken into account, which

can be dealt with easily by suitably selecting the sequence λk

for a fixed γ satisfying γ ∈ (0,2). Another degree of freedom

comes from the choice of the parameters nk.

For the sequence λk, we consider arbitrary choices and

multiplicities subject to the argument restrictions in § II-B.

Thus, for all k, we assume (sγ + λk)
−1 ∈ H∞(Π). It remains

to satisfy (sγ +λk)
−ℓ ∈ H2(Π) so that their orthonormalized

versions span a dense subset of H2(Π). Then, it suffices to

let ℓγ > 1
2

to assure (sγ +λk)
−ℓ ∈ H2(Π). Further details will

be supplied later. Thus the problem studied is of synthesizing

complete fractional orthonormal bases in H2(Π). The com-

pleteness problem boils down deriving sufficient conditions

in terms of the parameters λk and their multiplicities.

After establishing the completeness of the functions:

(sγ + λk)
−ℓ, 1 ≤ ℓ ≤ nk; k ≥ 1 in H2(Π), the next task is

to orthonormalize them. This is a non-trivial process due to

the branch cut along the negative real axis. Since s = 0 is a

branch point, the following inner products

< (sγ + λk1
)−ℓ1 ,(sγ + λk2

)−ℓ2 >=
(8)

1

2π

∫ ∞

−∞

dω

[( jω)γ + λk1
]ℓ1 [( jω)γ + λk2

]ℓ2

are to be interpreted in a principal-value integral sense where

the value at s = 0 is defined by continuation. The inner

products (8) can be calculated explicitly by the aid of the

residue method. Note that

( jω)γ = |ω |γ
{

e jπγ/2, ω > 0

e− jπγ/2, ω < 0.
(9)

The final task is to obtain the impulse responses of the frac-

tional orthonormal basis functions, which are complicated

expressions due to the branch cut.

D. Motivation for the completeness study

Let us consider the simple fractional rational transfer

function (sγ + λk)
−ℓ, λk ∈ R. By taking its inverse Laplace

transform, we obtain the impulse response of this system

denoted by φ̂kℓ(t), t > 0 as follows

φ̂kℓ(t) =
1 or 2

∑
p=0

ℓ−1

∑
q=0

cpqtqeαpqt

(10)

+
1

π

ℓ

∑
i=1

ℓ!

i!(ℓ− i)!

∫ ∞

0

λ ℓ−i
k sin(πγi)xγie−xt dx

[x2γ + 2λkxγ cos(πγ)+ λ 2
k ]ℓ

for some complex numbers cpq,αpq. The above expression,

as pointed out in [37], has two terms: the first term is the

sum of the exponential modes originating from the poles of

(sγ + λk)
−ℓ and the second term is the combination of an

infinite number of exponentials originating from the branch

cut. The presence of the first term and the range of p as

well as the numbers cpq,αpq depend on the values of γ and

λk. This term has the character of a linear time-invariant

dynamics and quickly dies out since Re(αpq) < 0 for all p

and q. The second term is more profound. In fact, from the

definition of the gamma function:

Γ(β ) =

∫ ∞

0
e−zzβ−1 dz,

we have as t → ∞,

φ̂kℓ(t) ≈
ℓ

∑
i=1

ℓ! sin(πγi)Γ(γi+ 1)

i!(ℓ− i)!πλ ℓ+i
k

t−(γi+1).

Thus, the fractional rationals appear to be more suitable than

the rationals in modeling slowly decaying impulse responses.
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III. SYNTHESIS OF COMPLETE FRACTIONAL BASES

In this section, we synthesize complete fractional bases

in H2(Π). As basis functions, we propose the following so-

called generator functions

φkℓ(s) =
(sγ + λ )1−m

(sγ + λk)ℓ
, 1 ≤ ℓ ≤ nk; k ≥ 1 (11)

where λ > 0, m ≥ 2 is a convergence factor to be fixed later,

λk ∈ Π are given complex numbers, and γ ∈ (0,1) is a fixed

number.

When γ = 1, it was shown in [33] that the generator

functions (11) with m = 1 are complete in H2(Π) if and

only if the chosen basis poles satisfy the criterion:

∞

∑
k=1

nk

Re(λk)

1 + |λk|2
= ∞. (12)

Our first result in this section establishes that under the same

criterion, the generator functions (11) are complete in H2(Π)
if 0 < γ < 1 and m satisfies 2γm > 1 + γ .

Theorem 3.1: Let γ ∈ (0,1] be a fixed number and m

be a positive integer satisfying 2γm > 1 + γ . Consider the

generator functions (11) defined by a choice of numbers

λ > 0 and λk ∈ Π. Then, (11) are complete in H2(Π) if

(12) holds.

The completeness condition (12) applies to all 0 < γ ≤ 1.

For a fixed γ ∈ (0,1), restricting λk to Π for all k results in

the generator functions (11) being analytic on Cmax{0,2−(1/γ)}.
This restriction might introduce some conservatism on the

choice of λk. Nevertheless, (12) does not preclude the

possibility of λk converging to zero slowly. For example,

put λk = 1/k for all k. Then, (12) is satisfied.

We propose the generator functions for the case γ ∈ (1,2)
as follows

ηkℓ(s) =
1

(sγ + λk)ℓ
, 1 ≤ ℓ ≤ nk; k ≥ 1 (13)

where λk ∈ Cγ̄ for all k and some γ < γ̄ < 2.

Theorem 3.2: Let γ ∈ (1,2) be a fixed number. Consider

the generator functions (13) defined by a choice of the

complex numbers λk ∈ Cγ̄ for all k and some γ < γ̄ < 2.

Then, (13) are complete in H2(Π) if

∞

∑
k=1

nk

ra
k cos(aθk)

1 + r2a
k

= ∞ (14)

where λk = rke jθk and a = (2− γ̄)−1.

The completeness of the generator functions (13) was

established by restricting λk to Cγ̄ for all k. This set is

a proper subset of Cγ . It is a difficult question to answer

whether it is possible to relax this restriction. Nevertheless,

as γ approaches 1, γ can be forced to approach 1. Then,

(14) coincides with (12) demonstrating that the former is

consistent with the boundary case γ = 1.

IV. NUMERICAL EXAMPLE

In this section, we illustrate the basis synthesis scheme by

a numerical example. Let

φ1(s) =
1

s1.5 + e j π
6

, φ2(s) =
1

s1.5 + e− j π
6

be two given generator functions. We are to construct two

orthonormal basis functions from φ1 and φ2 and compute

their impulse responses as well. The basis functions with

real-valued impulse responses are easily found as

ǧ1(s) = φ1(s)+ φ2(s) =
2s1.5 +

√
3

s3 +
√

3s1.5 + 1
,

ǧ2(s) = j[φ1(s)−φ2(s)] =
1

s3 +
√

3s1.5 + 1
.

The difficult part is the orthonormalization of ǧ1 and ǧ2.

To this end, first we compute the inner products 〈φk,φl〉 for

k, l = 1,2 as

〈φ1,φ2〉 =
1

1.5π

∫ ∞

0

x−
1
3 dx

(x + e− j 7π
12 )(x + e j 11π

12 )
,

〈φ1,φ2〉 =
2π j
1.5π

1− e− j 2π
3

[
(−e− j 7π

12 )−
1
3

e j 11π
12 − e− j 7π

12

+
(−e j 11π

12 )−
1
3

e− j 7π
12 − e j 11π

12

]

=
4√
27

e− j 2π
9 = 0.5897− j0.4948,

‖φ1‖2
1 = ‖φ2‖2 =

1

3sin(π
3
)

[
sin( 11π

36
)

sin( 11π
12

)
+

sin( 7π
36

)

sin( 7π
12

)

]

= 1.4468

where the details are omitted. The Gram-Schmidt procedure

applied to ǧ1 and ǧ1 yields two basis functions that are

orthogonal to each other:

χ̃1 = ǧ1, χ̃2 = ǧ1 −
‖ǧ1‖2

2

〈ǧ1, ǧ2〉
ǧ2.

The inner products of ǧ1 and ǧ2 are computed as

〈ǧ1, ǧ2〉 = −2Im〈φ1,φ2〉 = 0.9896,

‖ǧ1‖2
2 = 2‖φ1‖2

2 + 2Re〈φ1,φ2〉 = 4.0730,

‖ǧ2‖2
2 = 2‖φ1‖2

2 −2Re〈φ1,φ2〉 = 1.7142.

Thus,

‖χ̃1‖2 = ‖ǧ1‖2 = 2.0182,

‖χ̃2‖2
2 = −‖ǧ1‖2

2 +
‖ǧ1‖4

2

〈ǧ1, ǧ2〉2
‖ǧ2‖2

2 = 24.9653.

It follows that the following basis functions

χ1(s) = 0.4955ǧ1, χ2(s) = 0.2001ǧ1−0.8237ǧ2. (15)
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are orthonormal and their linear span equals the linear span

of φ1 and φ2. More explicitly, χ1 and χ2 can be written as

χ1(s) =
0.9910s1.5 + 0.8582

s3 +
√

3s1.5 + 1
,

χ2(s) =
0.4002s1.5−0.4771

s3 +
√

3s1.5 + 1
.

If the impulse responses of ǧ1 and ǧ2 are known, then

the impulse responses of χ1 and χ2 denoted by χ̂1 and χ̂2,

respectively, can be computed from (15) by superposition.

The former impulse responses are also computed by super-

position from the impulse responses of φ1 and φ2 denoted

respectively by h1 and h2. Notice that φ1 has two poles in

Π3 at z11 = e− j 5π
9 , z12 = e j 7π

9 and φ2 has two poles at the

conjugate points: z21 = e j 5π
9 , z22 = e− j 7π

9 . For φ1, the residue

term, i.e., the first term in (10) is computed as

2

∑
k=1

ez1kt

(s1.5 + e j π
6 )′s=z1k

=
1

1.5
e−t cos( 4π

9 )− j[t sin( 4π
9 )− 5π

18 ]

+
1

1.5
e−t cos( 2π

9 )+ j[t sin( 2π
9 )− 7π

18 ].

A similar computation is made for φ2. Thus,

h1(t) = − 1

π

∫ ∞

0

x1.5

x3 + e j π
3

e−xt dx +
1

1.5
{

e−t cos( 4π
9 )− j[t sin( 4π

9 )− 5π
18 ] + e−t cos( 2π

9 )+ j[t sin( 2π
9 )− 7π

18 ]},

h2(t) = − 1

π

∫ ∞

0

x1.5

x3 + e− j π
3

e−xt dx +
1

1.5
{

e−t cos( 2π
9 )− j[t sin( 2π

9 )− 7π
18 ] + e−t cos( 4π

9 )+ j[t sin( 4π
9 )− 5π

18 ]}.

Hence,

χ̂1(t) = 0.6607e−0.1736t cos(0.9848t−0.8727)

+0.6607e−0.7660t cos(0.6428t−1.2217)

−
∫ ∞

0

0.3154x4.5 + 0.1577x1.5

x6 + x3 + 1
e−xt dx,

χ̂2(t) = −1.1302e−0.1736t sin(0.9848t−1.1110)

+1.1302e−0.7660t sin(0.6428t−0.9834)

−
∫ ∞

0

0.1274x4.5−0.3904x1.5

x6 + x3 + 1
e−xt dx.

The periodic modes in both responses are linear combina-

tions of two damped sinusoids, which quickly die off. Fig 1

shows the impulse responses of χ1 and χ2. As expected from

the initial value theorem, both responses start at zero. Note

that

φk(0+) = lim
s→∞

sφk(s) = 0, k = 1,2.

V. CONCLUSIONS

In this paper, fractional orthonormal basis functions with

prescribed poles were synthesized. These basis functions

were shown to be complete in H2(Π) under mild restrictions

on the choice of the basis poles. This result enables one to

approximate systems in H2(Π), in particular the systems

with both short and long memories, by convergent Fourier

0 2 4 6 8 10 12 14 16 18 20
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−0.4

−0.2

0
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0.6

0.8

Time (s)

χ
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Fig. 1. The impulse responses of the synthesized basis functions.

series of the fractional orthormal basis functions of this

paper.

The work initiated in this paper can be continued in several

directions. First, completeness properties of the synthesized

bases in different spaces, for example the spaces in which the

rational orthonormal bases have been shown to be complete,

should be investigated. The convergence and the approxima-

tion properties of the Fourier series formed by the fractional

orthonormal basis functions over some known subsets of

these spaces need to be explored. It is worth to study

the completeness problem for fractional incommensurable

rationals with prescribed poles. Fast and reliable numerical

methods are needed to evaluate the impulse-responses of

the synthesized basis functions. Then, it will be possible

to quickly calculate time responses of the synthesized basis

functions to arbitrary inputs.
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