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Abstract— We consider the problem of designing controllers
for spatially-varying interconnected systems distributed in one
spatial dimension. The matrix structure of such systems can
be exploited to allow fast analysis and design of centralized
controllers with simple distributed implementations. Iterative
algorithms are provided for stability analysis, H2 analysis, and
sub-optimal controller synthesis. For practical implementation
of the algorithms, approximations can be used, and the compu-
tational efficiency and accuracy of the algorithms incorporating
these approximations are demonstrated on an example.

I. INTRODUCTION

The control of spatially distributed interconnected systems

has been of great interest in practical applications involv-

ing discretized partial differential equations(PDE’s), such as

boundary layer and transition control in fluid mechanics

[1][2], flexible structures [3], and also in networks of spa-

tially discrete interconnected subsystems, such as highway

traffic control[4] and vehicle platooning [5], building anti-

earthquake systems[6], formation flight [7], large adaptive

telescope mirrors [8], etc.

The challenge has been in the computational cost of

designing effective controllers and the complexity of imple-

menting them. For PDE’s, when directly solving for the opti-

mal control is not viable, the system is often approximated as

a large but finite number of coupled ODE’s or interconnected

subsystems. The system matrix describing the input-state-

output behavior of N interconnected subsystems(ODE’s),

each of size(order) n, will be nN × nN , and thus most

matrix operations will be O(n3N3) floating point operations,

making traditional robust or optimal controller design pro-

hibitively expensive for fine discretizations or large numbers

of discrete subsystems. Much research has been dedicated to

surmounting this computational obstacle. In [9] and [10],

multilevel techniques and the special matrix structure(H-

matrix) have been exploited in iterative methods for find-

ing fast (O(N2), O(N log(N)) ) approximate solutions to

Lyapunov and Riccati equations for systems governed by dis-

cretized PDE’s. In [11] an efficient LMI method for spatially

homogenous interconnected structures was developed, which

was extended to finitely many heterogeneous subsystems in

an array with boundary conditions [12] in O(n2αNα)(where

3.5 < α < 5). There has also been a conservative extension

of the results of [11] to heterogeneous systems through

robust synthesis and by treating the heterogeneity as norm

bounded uncertainty[13]. In [14], it is shown that for infinite

arrays of spatially invariant interconnected systems, a spatial
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Fig. 1. String interconnection

Fourier transform may be used for solving optimal control

problems, and that the optimal controller may then be well

approximated using spatial truncation, allowing the designer

to pick the connectivity of the controller. These results have

been extended in [15] to show that the optimal controllers for

infinite dimensional exponentially spatial decaying hetero-

geneous systems are also exponentially spatial decaying, but

there are no results on efficiently calculating such controllers.

In this paper we address the analysis and control of spa-

tially varying systems on finite connected one-dimensional

strings, such as those discussed in [12]. We approach the

problem from a structured matrix algorithmic point of view;

by revealing the Sequentially Semi-Separable(SSS) structure

of the string connected system in Section II, we show that

efficient(O(n3N)) matrix operations are possible on such

systems, and that given a controller with the same structure,

direct controller distribution is possible. We then show in

Section III that using iterative methods under which the

SSS structure is closed, we can efficiently check matrix

stability, and calculate solutions to Lyapunov and Riccati

equations, thus producing controllers with SSS structure, also

in O(n3N). The caveat emptor is that the extreme compu-

tational efficiency will come at the cost of successive matrix

approximations during the iterative methods to be discussed

in Section IV. However, the stability and performance of the

synthesized controller may be efficiently verified a posteriori

in a manner robust to these approximations.

To allay fears brought on by such an iterative approximate

approach, in Section V we will conduct an example of

distributed H2 control of a car platooning problem, to show

the potential accuracy of such methods and the O(n3N)
complexity.

II. SUBSYSTEM MODEL/INTERCONNECTION STRUCTURE

The subsystem models considered will most generally

consist of state space realizations of the sort Σs:
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where vm
s and vp

s are interconnections to other subsys-

tems(see Figure 1), zs and ws are performance outputs and
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disturbance inputs, and ys and us are measured outputs

and controlled inputs. The W ∗
s terms represent informa-

tion feedthrough between subsystems Σs+1 and Σs−1. A

generalization of this subsystem has appeared in [12] and

associated papers. We will generally allow each subsystem

Σs to be arbitrarily different from every other subsystem,

even having different state, input, and output dimensions, as

long as the interconnections are of correct size. An example

of such a subsystem model will be shown in Section V, and

others are available in the literature, such as multiple vehicle

systems [13], flight formations [7], offshore bases [16], and

discretizations of various PDE’s, [11], [3] etc.

If N of these subsystems(2) are connected together in

a string (see Figure 1) with zero boundary inputs (vm
1 =

0,v
p
N = 0) and the interconnection variables are resolved,

we obtain the interconnected system:
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where the overline indicates a ‘lifted’ variable; for vectors:

x =
[

xT
1 xT

2 ... xT
N

]T
, and the interconnected sys-

tem matrices (A, B1, B2, C1, D11, D12, C2, D21, D22) have

a very special structure, called ‘Sequentially Semi Separa-

ble’(SSS). For example, for N = 5, we obtain equation (1)

at the bottom of the page. Such matrices will be denoted:

A = SSS(Bm
s , Wm

s , Cm
s , As, B

p
s , W p

s , Cp
s ) (4)

where the arguments of SSS() are called the ‘generator’

matrices of A, and the SSS notation of the other matrices

can be easily derived. This type of data-sparse structured

matrix has recently been studied with respect to LTV systems

theory and inversion [17], scattering theory [18], and for

their own sake [19]. The facts in which we are interested

are that SSS matrices can be stored using only a linear

amount of memory, there exist algorithms of only linear

computational complexity(O(N)) for SSS matrix-matrix ad-

dition and multiplication, and inversion, and further, that the

class of SSS matrices is closed under these operations, that

is, they are structure preserving. These properties(many of

which are similar to those possessed by H matrices[10])

are especially important, since they allow the effective use

of iterative algorithms incorporating inverses, in contrast to

other classes of data sparse matrices(such as banded), which

are not closed under inversion.

The consideration of such systems leads to the control

design problem, extended to SSS distributed systems:

Problem 1 (Control Synthesis): Given Σ, find a stabiliz-

ing controller K with SSS structure.

…
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Fig. 2. Controller implementation

Because a distributed implementation of the controller is

desired, not a centralized one, the controller K is constrained

to have a realization of SSS matrices, as we will now explain.

Suppose that some method has been used to design a

controller K :

[
AK BK

CK DK

]

, for the distributed system

(3), where the SSS structure of each matrix is:

AK = SSS(Gm
s , Mm

s , Nm
s , Fs, G

p
s , M

p
s , Np

s )

BK = SSS(Km
s , Rm

s , Qm
s , Gs, K

p
s , Rp

s , Q
p
s)

CK = SSS(Sm
s , T m

s , Um
s , Ns, S

p
s , T p

s , Up
s )

DK = SSS(Xm
s , Zm

s , Pm
s , Ys, X

p
s , Zp

s , P p
s )

then it can be verified that such a controller can be directly

distributed into subcontrollers Ks:
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where

Ĝ
∗

s =
[
G∗

s K∗

s 0 0
]
, Q̂

∗

s =
[
0 (Q∗

s)
T 0 (P ∗

s )T
]T

Ŝ
∗

s =
[
0 0 S∗

s X∗

s

]
, N̂

∗

s =
[
(N∗

s )T 0 (U∗

s )T 0
]T

R̂
∗

s = diag(M∗

s , R
∗

s , T
∗

s , Z
∗

s )

where ∗ is held constant as either m or p in each term. This is

obviously the same structure as the subsystems, connected as

in Figure 2. Interpreted in this way, the f∗
s channels represent

the communications between each subcontroller. This illus-

trates a key advantage of SSS over H matrix or frequency

domain controller design methods for distributed systems:

SSS structured controllers admit a simple distributed con-

troller implementation, similar in structure to those sought

in [11] and [12], without any additional computation.

III. COMPUTATIONAL METHODS

For computational complexity, we use ‘big O’ notation,

Definition 1: A positive function is f(N) ∈ O(Nα) if

there exist finite positive constants, ∞ > c, κ > 0 such that

f(N) < cNα, ∀N > κ.
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Informally, we will say that a procedure ‘is’ O(Nα) if it can

be computed in f(N) ∈ O(Nα) flops.

In this section we will discuss iterative methods for solving

some matrix equations commonly encountered in control,

which may be conducted very efficiently for SSS matrices.

The key to the method is that there are ‘fast’ converging

iterative algorithms for solving these problems, and that each

iteration may be computed using SSS arithmetic algorithms

in only O(N). We will begin with a discussion of some of

the properties of SSS matrices under arithmetic operations,

which are important to understanding our techniques.

A. SSS orders

For an SSS matrix: A =
SSS(Bm

s , Wm
s , Cm

s , As, B
p
s , W p

s , Cp
s ), s ∈ {1, 2, ...N},

many matrix-matrix operations are O(N), but cubic

in the sizes of the generator matrices. For example,

if Bm
s , Wm

s , Cm
s , As, B

p
s , W p

s , Cp
s ∈ R

n×n, ∀s ∈
{1, 2, ...N}, then computing A

2
will take 40n3N flops [18].

However, it has be shown[17] that the ‘orders’ of the SSS

matrices, and thus their generators, grow in size additively

with each SSS addition and multiplication operation. To be

explicit, we define:

Definition 2: The upper and lower order of an SSS matrix

is the largest size of its upper and lower multiplier terms(Wm
s

and W p
s in A), respectively. The class of SSS matrices

of maximum lower and upper orders wl and wu with N

diagonal terms is denoted as SSSwl,wu,N .

Thus the growing order of SSS matrices can be related as:

Lemma 1: For conformably partitioned matrices A ∈
SSSal,au,N and B ∈ SSSbl,bu,N , then A + B = C ∈
SSScl,cu,N where cl ≤ al + bl, cu ≤ au + bu, and

AB = D ∈ SSSdl,du,N where dl ≤ al + bl, du ≤ au + bu.

Proof: This can be seen from the addition and multiplication

algorithms[18] [19].

This is important since we intend to use iterative algorithms

for controller synthesis, and evidently each iteration will

cost more than the previous. However, in the following

subsections we will bound the number of iterations, k, for

each algorithm independently of N , and thus still have

O(N) computation, although with a very large multiplicative

constant in front. To remedy this, in Section IV we will show

that for practical purposes, low order approximations may be

used to considerably cut down on the order growth.

B. Matrix Sign Function

The matrix sign function[20][21], defined for a square

matrix X with no eigenvalues on the imaginary axis, may

be calculated as

Algorithm 1 Sign Iteration[20]

Z0 = X

Zk+1 =
1

2
(Zk + Z−1

k ) for k = 0, 1, 2, ...

sign(X) = lim
k→∞

Zk

This iteration has been proven to be equivalent to a New-

ton’s method, and correspondingly converges quadratically

near the solution, but may start out slower. However, from

the condition and damping of the spectrum of X , the number

of iterations to convergence can be bounded:

Lemma 2: For a matrix X with no purely imaginary

eigenvalues, the number of sign iterations k to reach ‖Zk −
sign(X)‖2 ≤ ǫ for Jordan decomposition X = PJP−1

will be O(log2(η)2 + log2(log2(ǫ
−1 + cond(P )))), where

η = maxi{1 + |ℜ(λi)| + |ℜ(λi)|−1 + |ℑ(λi)|
|ℜ(λi)|

} Proof:

[10], Lemma 3.5

So, given some X of size N with SSS structure, we may

compute iterations, each of only O(N)(since SSS addition,

inversion, and scalar multiplication are O(N)), to compute

the matrix sign of X . However, to claim O(N) sign com-

putation, we must also upper bound k with a constant inde-

pendently of N, ∀N ∈ N, using the following assumptions:

• A1: ρ(X) < β1 < ∞
• A2: mini |ℜ(λi(X))| > β2 > 0
• A3: cond(P ) < β3 < ∞ for X = PJP−1

A1 and A2 imply that η will always be finite, but do

not seem very restrictive, as they just imply some analytic

continuity around the imaginary axis and a finitely bounded

spectrum. A3 is the least intuitive, but keep in mind that β3

can be very large without unduly increasing k, for example

log2(log2(10100)) < 9. From now on the set of matrices that

satisfy A1, A2, and A3 will be denoted as A. We can thus

state:

Lemma 3: For the set of SSS matrices X ∈ SSS•,•,N ,

X ∈ A ∀N ∈ N, an approximation, S ∈ SSS•,•,N

to sign(X) can be calculated to within some prespecified

positive tolerance ǫ > ‖S − sign(X)‖2 in O(N).
We will use the conservative Frobenius norm to check

convergence, since we can calculate it exactly in O(N) for

SSS matrices(‖X‖2
F = Tr(X

T
X)).

C. Stability Check Through Matrix Sign

It can be shown that:

Lemma 4: For some matrix X , sign(X) = −I if and

only if ℜ(λ(X)) < 0.

Proof: Follows from the Jordan-decomposition based

definition of the sign function in[21]

Because of the fast, size independent, convergence of the

sign iterations, this can be used as an O(N) check on the

stability of SSS matrices ∈ A, ∀N ∈ N.

Remark 1: Note that we are using ‘check’ here in a prac-

tical, finite precision, sense. In exact arithmetic, Algorithm

1 will never converge exactly to sign(X) in finite k unless

λ(X) ∈ {−1, 1}, but in practice we ‘check’ stability by

checking the approximation from Lemma 3 : ‖S + I‖F

should be small.

D. Structure Preserving Permutation

Since we will be designing controllers, it is also necessary

to check the stability of closed loop systems, which will

have matrices with SSS blocks. We could just use block

matrix algebra to do the matrix sign iteration, but this could
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fail when using Schur complements to calculate the inverses.

Instead, we can permute the rows and columns of SSS block

matrices to form single SSS matrices. The following lemma

is for a 2 × 2 block, but it can be easily extended to other

dimensions.

Lemma 5: Given matrices R, X, Y , Z with SSS represen-

tations:

R = SSS(BRm
s , WRm

s , CRm
s , AR

s , BRp
s , WRp

s , CRp
s )

X = SSS(BXm
s , WXm

s , CXm
s , AX

s , BXp
s , WXp

s , CXp
s )

Y = SSS(BY m
s , WY m

s , CY m
s , AY

s , BY p
s , WY p

s , CY p
s )

Z = SSS(BZm
s , WZm

s , CZm
s , AZ

s , BZp
s , WZp

s , CZp
s )

and lifted vectors e, f , g, h, the relations
[

e

f

]

=

[
R X

Y Z

] [
g

h

]

,

[
e

f

]

= P

[
g

h

]

(6)

are equivalent, to within a permutation, where P =
SSS(B̂m

s , Ŵm
s , Ĉm

s , Âs, B̂
p
s , Ŵ p

s , Ĉp
s ) with

Âs =

[
AR

s AX
s

AY
s AZ

s

]

, Ĉ∗
s =

[
diag(CR∗

s , CX∗
s )

diag(CY ∗
s , CZ∗

s )

]

B̂∗
s = diag(

[
BR∗

s BX∗
s

]
,
[

BY ∗
s BZ∗

s

]
)

Ŵ ∗
s = diag(WR∗

s , WX∗
s , WY ∗

s , WZ∗
s )

and the ∗’s are held constant as m or p in each term.

Proof: This is easily verified by substitution.

The transformation from

[
e

f

]

→
[

e

f

]

could be called a

‘shuffle’ permutation, since e and f are shuffled like a deck

of cards to get

[
e

f

]

. The reverse operation is also possible:

Lemma 6: Given an SSS matrix P with

conformably partitioned generators: P =

SSS(

[
B1m

s

B2m
s

]

, Wm
s ,

[
C1m

s C2m
s

]
,

[
A11

s A12
s

A21
s A22

s

]

,
[

B1p
s

B2p
s

]

, W p
s ,

[
C1p

s C2p
s

]
), the relations (6) are

equivalent, to within a permutation, where:

R = SSS(B1m
s , Wm

s , C1m
s , A11

s , B1p
s , W p

s , C1p
s )

X = SSS(B1m
s , Wm

s , C2m
s , A12

s , B1p
s , W p

s , C2p
s )

Y = SSS(B2m
s , Wm

s , C1m
s , A21

s , B2p
s , W p

s , C1p
s )

Z = SSS(B2m
s , Wm

s , C2m
s , A22

s , B2p
s , Ŵ p

s , C2p
s )

and everything is assumed conformably partitioned.

Proof: This is easily verified by substitution.

This method will allow us to perform sign iterations for

block SSS matrices without using block algorithms, and then

repermute to obtain the block solution. This will be implicitly

used frequently in the sequel.

E. Lyapunov, Riccati, and H2 through Matrix Sign

It has been shown([20][22]) that general symmetric alge-

braic Riccati equations and stable Lyapunov equations:

R(X) = XA + AT X + Q − XRX = 0 (7)

L(X) = XA + AT X + Q = 0

Q = QT , R = RT , can be solved by forming the appro-

priate Hamiltonian matrix and calculating its matrix sign.

Such methods have also been used for solving centralized

optimal control problems for partial differential equations

with H matrices in [10], and the idea with SSS matrices is

similar. By applying Lemma 5, the block SSS Hamiltonian,

H =

[

A −R

−Q −A
T

]

may be permuted into a single SSS

matrix H , on which the sign iterations may be performed

using Algorithm 1, and assuming that H ∈ A, the matrix

sign iteration will converge within some tolerance, sign(H)
may be repermuted using Lemma 6, and a solution, X ∈
SSS•,•,N , may be solved for in O(N).

The extension to O(N) H2 optimal control of SSS systems

is then obvious. It is well known [23] that all that is needed

to synthesize such controllers is the solution of two Riccati

equations and a few matrix multiplications and additions, and

due to the closedness properties of the SSS structure, the

resulting H2-optimal controller matrices will also be SSS.

Likewise, analyzing the stability and H2 norm of the closed

loop system,

[
Acl Bcl

Ccl 0

]

amounts to a stability check of

Acl, and the solution of a Lyapunov equation to compute a

closed loop Grammian, each of which may be computed in

O(N), assuming the relevant matrices are ∈ A.

Remark 2: We have not specified any method of checking

the assumptions for the existence of H2 optimal controllers,

because we do not, in fact, have an efficient method for

explicitly checking stabilizability, detectability, and the loca-

tion of transmission zeros. Instead, we suggest performing

the SSS H2 synthesis calculations and checking the closed

loop stability and performance of the resulting controller(if

the Riccati equations have solutions!) to see if it is valid.

IV. APPROXIMATIONS

As mentioned in Section III, for SSS matrix multiplication

and addition, some of the generator matrices of the resulting

SSS matrix will grow with each operation. Because of this,

we cannot go on adding and multiplying SSS matrices in

an efficient manner forever, as after each operation the SSS

matrices will grow in order, and the SSS operations are

cubically dependent on the orders. Since we have assumed

that the number of iterations needed for controller synthesis

is bounded independently of N , the overall procedure will

still be O(N), but the hidden constant(c in Definition 1) may

be prohibitively large for practical computation(notice that

the SSS order will double at each step of the sign iteration

in Algorithm 1). The solution to this problem lies in order-

reducing SSS approximations, discussed in the next section.

A. Optimal order reduction

For infinite dimensional systems, many systems can be

shown to have exponentially spatially decaying(ESD)[15]

operators, a characterization that basically implies that the

norm of the couplings between subsystems is bounded by

some exponential decay in space. In [14] it is shown that

quadratically optimal controllers for ESD spatially invariant
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distributed systems are also ESD, and in [15] this is extended

to the spatially varying case for the solutions of Riccati

equations of ESD systems. This leads to arguments for

spatially truncating the controller for an almost optimal

distributed implementation [14].

For very large(N >> 0) finite dimensional systems,

we may also take this route: given a Riccati or Lyapunov

equation solution with SSS structure, X , we could compute

a pth spatial truncation approximation of SSS structure by

calculating the middle 2p + 1 diagonals, and then finding

the generator matrices of the truncation Xp ∈ SSSp,p,N

using the construction algorithm[18] specialized to banded

matrices. However, within the SSS framework, there is a

Hankel norm optimal order reduction [17][18]. That is, given

some SSS matrix X ∈ SSSq,q,N , we may calculate a lower

order approximation X̃ that achieves:

inf
˜
X∈SSSp,p,N

‖X̃ − X‖H (8)

where ‖Y ‖H = maxi ‖Hi(Y )‖ and Hi(Y ) are the Hankel

blocks[17] of matrix Y , and p < q. The Hankel norm is

intimately related to the spectral norm as ‖Y ‖H ≤ ‖Y ‖2 ≤√
N‖Y ‖H for some Y ∈ R

N×N , and there exist O(N)
algorithms for computing (8) which work very well(much

better than spatial truncation) in practice.

This also provides an answer to the problem of the SSS

order growing after each operation; after every few order-

increasing operations, we can do an SSS order reducing

approximation, making the iterative schemes very efficient

in practice. However, even if the order of the SSS matrices

of the Riccati solutions and state space matrices (AK , BK ,

CK , DK) are limited, using spatial truncation or ‖ · ‖H

optimal approximation, the distributed controller(5) might

still be very inefficiently represented(especially considering

the construction of the R̂s terms). Therefore, the large size

of the communication vectors might surpass the abilities of

the controller communication links.

However, through Lemmas 5 and 6, the input-output and

state dynamics of the controller(5) may be expressed as

a single block SSS matrix:

[

ξ̇s

us

]

= P

[
ξs

ys

]

with P =

SSS(

[
Ĝm

s

Ŝm
s

]

, R̂m
s ,

[

N̂m
s Q̂m

s

]
,

[
Fs Gs

Ns Ys

]

,

[
Ĝp

s

Ŝp
s

]

, R̂p
s ,

[

N̂p
s Q̂p

s

]
), and by doing a model order reduction on this

matrix, the size of the R̂ terms may be reduced without

destroying the distributed structure. However, it should be

noted that neither the spatial truncation nor the ‖·‖H optimal

approximation of P is guaranteed to remain stabilizing, so

the closed loop stability and performance should be checked

for each order-reduced controller.

B. Numerical issues relating to the Approximations

Of course, iteratively approximating SSS matrices using

lower orders will call into question the use of the sign func-

tion methods for checking stability and solving the Riccati

equation. With respect to rounding errors, the sign function

has been found to often work just as well as invariant sub-

space techniques [24], but as expected, larger intermediate

approximations often cause larger residual errors. Hence we

cannot ‘solve’ the Lyapunov and Riccati equations; there

will always be small non-zero residuals, L(X̃), R(X̃), the

norms of which are not necessarily a good measure of the

backwards error[25][26], and the criteria suggested for which

are not easily calculable using SSS methods. Furthermore,

due to the potential fragility of optimal controllers[27] it is

not acceptable to blindly use an approximated controller and

assume that it will have the expected closed loop stability

and performance; some kind of satisfactory closed loop test

is needed, which we will next describe.

For checking matrix stability, it is infeasible to run Algo-

rithm 1 approximation-free, since the SSS orders of Zk grow

as 2k, but an unsuitable low-order approximation could bump

an unstable eigenvalue into the left half plane, or vice-versa,

falsifying the result. For stable matrices, ℜ(λ(X)) < 0,

X ∈ A the SSS order necessary to represent Zk exactly

will eventually approach 0, since limk→∞ Zk = sign(X) =
−I ∈ SSS0,0,N , but due to the erratic behavior of the

spectrum λ(Zk) during the iterations, any approximation,

Z̃k, must be very accurate: ‖Zk−Z̃k‖2 < β2

β1β3

to guarantee

that no eigenvalues cross the imaginary axis.

However, for symmetric matrices Zk = Z
T

k , λ(Zk) ∈ R,

standard perturbation theory [28] shows that

max
t∈{1,2,...,N}

|λt(Zk) − λt(Z̃k)| ≤ ‖Zk − Z̃k‖F

and also, for symmetric sign iterations, it can be shown that

any eigenvalues initially inside the unit circle |λt(X)| < 1
will be transported outside after the first iteration: |λt(Zk)| ≥
1, ∀k ∈ N, allowing the use of aggressive(any ‖Zk −
Z̃k‖F < 1) approximations without the risk of eigenvalues

crossing the imaginary axis. Fortunately, using Lyapunov

stability theory, we can convert non-symmetric stability

problems into symmetric problems, as follows.

It is well known[29] for some E, P ∈ R
N×N , P = PT

with EP + PET ≺ 0, that ℜ(λ(E)) < 0 if and only if

P ≻ 0. Hence for SSS matrices, one can use the matrix sign

function to solve AclP +PA
T

cl + I = 0 for P using iterative

approximations, and if the resulting P̃ ≻ 0 and AclP̃ +

P̃A
T

cl ≺ 0, which are both symmetric stability problems(and

thus robust to approximation errors), then it is guaranteed

that ℜ(λ(Acl)) < 0.

As for the closed loop performance, after stability has

been verified, the Lyapunov equation: AclS + SA
T

cl +

BclB
T

cl = 0, may be relaxed to a strict inequality: ‖Ccl(sI−
Acl)

−1Bcl‖2 < γ if and only if ∃Π: Tr(CclΠC
T

cl) < γ2

where AclΠ+ΠA
T

cl +BclB
T

cl ≺ 0. For any such γ, there ex-

ists some small ǫ > 0 such that, Tr(CclSǫC
T

cl) < γ2, where

Sǫ is the solution to the preturbed Lyapunov equation[30]:

L(Sǫ) = AclSǫ + SǫA
T

cl + BclB
T

cl + ǫI = 0. In practice, this

means that we can use the matrix sign function with iterative

approximations to solve such a perturbed Lyapunov equation

for some S̃ǫ using a small ǫ, and (Tr(CclS̃ǫC
T

cl))
1/2 < γu
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is an upper bound on the H2 norm, as long as the residual

satisfies L(S̃ǫ) ≺ ǫI , which is just a symmetric stability

problem. Since Sǫ = S + ǫP , then given the residuals of the

closed loop stability performance equations, any ǫ such that(

AclS̃ + S̃A
T

cl + BclB
T

cl

)

+ ǫ
(

AclP̃ + P̃A
T

cl

)

≺ 0, with

corresponding S̃ǫ = S̃ + ǫP̃ will work.

Thus, the use of iterative low-order approximations in

checking matrix stability, calculating solutions to Lyapunov

and Riccati equations, and synthesizing sub-optimal H2

controllers is acceptable, since the a posteriori verifications

of closed loop stability and performance may be converted

to symmetric matrix stability problems, and thus efficiently

and robustly(with respect to approximation errors) checked.

V. APPLICATION: VEHICLE PLATOONING

As a demonstration of the method, we will consider the

control of a car platoon. We note that H2 performance isn’t

necessarily a very good measure of the ‘string stability’

usually desired in such applications(although it has been

considered before [31]). Rather, the point of this example

is to both show how coupled systems may be fitted into the

subsystem structure (2), and to demonstrate the O(N) com-

putational complexity for calculating sub-optimal distributed

controllers, in the hope that these techniques will be extended

to other control methods and applications.

The dynamics of each car is modeled as a simple point

mass with an actuator gain(gs) and lag(τs):





ẋ1
s

ẋ2
s

ẋ3
s



 =





0 1 0
0 0 1
0 0 −1

τs









x1
s

x2
s

x3
s



 +





0
q1
s

0



 vs +





0
0
gs



us

which is similar to models previously considered in the

literature[32][31][5], with a force disturbance input vs(t)
representing wind gusts. Each car measures its own velocity,

and the relative position between itself and the car in front

of it:

ys =

[
−c1

s 0
0 c2

s

] [
x1

s

x2
s

]

+

[
c1
s

0

]

x1
s−1 +

[
q3
s 0
0 q4

s

]

ns

except for the front car, which measures its own position. The

cost function will be based on each car’s input, z1
s = f1

s us,

and the difference between its following distance and a

reference, z2
s = (x1

s−1 − x1
s − r̂s), where the reference:

˙̂r = −1
κs

r̂+rs, is treated as a disturbance, but filtered through

a lag to keep the H2 norm finite and better represent a real

situation. Note that the dynamics are uncoupled in this ex-

ample(although linear draft dynamics could easily be added),

but the vehicles are coupled through their measurements and

cost functions. Such an interconnected system can be put in

0 50 100 150 200
0
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300

N

ti
m

e
(s

)

 

 

SSS

Matlab

Fig. 3. Average computational time comparison of SSS vs MATLAB H2

synthesis routines. Error bars indicate maximum and minimum times. Note
the linear trend for the SSS based solver compared to the approximately
cubic trend of MATLAB’s unstructured solver.

subsystem form(2) simply as Σs :




















0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 q1

s 0 0 0 0
0 0 −1

τs
0 0 0 0 0 0 0 gs

0 0 0 −1
κs

0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 f1

s

−f2
s 0 0 −f2

s 0 f2
s 0 0 0 0 0

−c1
s 0 0 0 0 c1

s 0 0 q3
s 0 0

0 c2
s 0 0 0 0 0 0 0 q4

s 0
0 0 0 0 0 0 0 1 0 0 0





















where the disturbance input is partitioned as: ws =
[

vs rs nT
s

]T
, and each car is allowed to measure it’s

own unfiltered reference: y3
s = rs.

This subsystem model can then be used to form the lifted

system of SSS matrices in (3), allowing the use of the

computational tools described in Section III to perform H2

controller synthesis.

1) O(N) Demonstration for H2 Synthesis: For this

example, we will allow the coefficients to vary ran-

domly in space. Each coefficient will have the fol-

lowing mean values: {τ, κ, q1, g, f1, f2, c1, c2, q3, q4} =
{0.1, 0.5, 0.1, 1, 1, 1, 1, 1, 0.1, 0.1}, but at each point s ∈
{1, 2, ...N} they will be allowed to randomly vary within

20% of this value(except for κ which is held constant). For

example, at each s ∈ {1, 2, ...N}, gs = g(1 + 1
5U(−1, 1)),

where U is a uniform distribution. For problems of size

N = {5, 10, 25, 50, 100, 150, 200} we did this 50 times each

using our SSS solver and MATLAB’s h2syn. The closed

loop ‖ · ‖2 norms varied between about 2 and 15, and the

performance of the SSS controllers was always within 10−5

of that of the MATLAB centrally optimal controllers.

In figure 3 we see a comparison of the synthesis computa-

tion times, where the bars show the maximum and minimum

time for each value of N , and the linear complexity of our

approach becomes an advantage after about N ≈ 150.

For reference to the algorithmic discussions, SSS orders

of wu = wl = 16 were used in all iterative schemes, and the

sign iterations took about 11 iterations to converge.
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Fig. 4. Closed loop performance of ‖·‖H optimal communication-reduced
controllers

2) Distributedness: For a typical example with N = 50,

figure 4 shows the decrease in closed loop H2 norm with the

increase in communication order, using the optimal order

reduction discussed in Section IV. All reduced controllers

with communication links of size at least 3 were stable, and

as we see, there is an exponential-like decrease, with high

performance controllers even for very small communication

links.

VI. CONCLUSION

We have shown how the SSS structure of 1-D spatially

varying interconnected systems may be exploited to compute

distributed controllers with almost centrally optimal H2

performance in only O(n3N), compared to O(n3N3) for

centralized methods. Our techniques use iterative approxima-

tions, potentially introducing errors, but sufficient conditions

for checking closed loop stability and performance may be

posed as symmetric stability problems, robust to these errors.

The H∞ analysis and synthesis problem, while more

complicated, is similar, and the details are discussed in [33].

The discrete time Riccati equation may also be solved with

the matrix sign function[34], so many results should be

extendable. Our stability and performance analysis should

also extend to H matrices[10], but it is not clear what the

distributed implementation of such controllers could be.
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