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Abstract—In this paper, we investigate the problem of design-
ing a switching compensator for a plant switching amongst a
(finite) family of given configurations (Ai,Bi,Ci). We assume that
switching is uncontrolled, namely governed by some arbitrary
switching rule, and that the controller has the information of the
current configuration i.

As a first result, we provide necessary and sufficient conditions
for the existence of a family of linear compensators, each applied
to one of the plant configurations, such that the closed loop plant
is stable under arbitrary switching. These conditions are based
on a separation principle, precisely, the switching stabilizing
control can be achieved by separately designing an observer
and an estimated state (dynamic) compensator. These conditions
are associated with (non–quadratic) Lyapunov functions. In the
quadratic framework, similar conditions can be given in terms of
LMIs which provide a switching controller which has the same
order of the plant.

As a second result, we furnish a characterization of all the
stabilizing switching compensators for such switching plants. We
show that, if the necessary and sufficient conditions are satisfied
then, given any arbitrary family of compensators Ki(s), each one
stabilizing the corresponding LTI plant (Ai,Bi,Ci) for fixed i,
there exist suitable realizations for each of these compensators,
which assure stability under arbitrary switching.

Index terms– Switching systems, Youla-Kucera

parametrization, separation principle, Lyapunov functions.

I. INTRODUCTION

Systems including both logic and continuous variables, the

so called hybrid systems, are currently considered a main

stream topic as it can be seen from the considerable number of

contributions (see for instance [1], [2], [3], [4]). In particular,

the so called switching systems, are relevant in many applica-

tions and are intensively considered in control theory for two

basic reasons.

First, switching is a phenomenon that naturally occurs in

several plants that can change suddenly their configuration and

an efficient control design must take into account this fact.

Basically, determining a single compensator which stabilizes

a switching plant can be regarded as a robust design problem

and faced with existing techniques [5], [6]. The most efficient

techniques are perhaps those based on the Lyapunov approach

[7], [8], [9]. In particular, those based on quadratic functions

have been successful because of the development of efficient

tools based on LMIs [10]. An interesting case is that in which

the compensator is informed on–line (not in the design stage)

of the plant configuration. This is basically a gain–scheduling
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problem [11], for which Lyapunov theory has been revealed

successful [12], [13], [14], [15].

The second reason of the intense investigation of switching

systems is that, even in the case of a single plant, considerable

advantages in terms of performances can be achieved by prop-

erly switching among compensators. In this case, switching

is not imposed by nature, but artificially introduced by the

designer. The consequent benefit is well established and indeed

switching techniques have been involved in adaptive schemes

[16], [17], [18], supervisory control [19], reset design [20] and

robust synthesis [21].

In dealing with switching compensators, a fundamental

issue is how to guarantee stability. In a recent paper [22]

the following essential result has been proved. Given a single

linear plant and a family of linear stabilizing compensators,

there always exist (possibly non–minimal) realizations for

all of them which assures global stability under arbitrary

switching. This result is based on a proper formulation of

the problem based on the Youla–Kucera parametrization [23],

[24] of all stabilizing compensators. The key idea is to show

that one can solve the problem, basically, by switching among

Youla–Kucera parameters. A key point is that the realization of

the Youla–Kucera parameters cannot be arbitrary, but suitably

constructed.

The main idea of the present paper is to consider at the same

time both the mentioned aspects: controlling a switching linear

plant by means of a switching linear controller. We assume

that plant switching is homogeneously determined while the

compensator commutations are commanded by the plant. Our

basic question is the following: given a switching plant,

under which conditions there exists a switching compensator

which stabilizes the plant under arbitrary switching? This

issue was pointed out as an open problem in [22]. Under the

assumption that the compensator is granted the instantaneous

exact knowledge of the current plant configuration, without

delay, we provide the following main results.

• Necessary and sufficient stabilizability conditions are

given. These are supported by polyhedral Lyapunov functions

and are based on a separation principle. The controller is

derived by designing an (extended) observer and a (dynamic)

state feedback, although we cannot provide bounds for the

compensator order.

• The mentioned conditions are constructive, but com-

putationally demanding. If we strengthen our assumptions

to quadratic stabilizability, then the necessary and sufficient

conditions are expressed in terms of LMIs. We show that the

compensator may have the same order of the plant.
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• Once the necessary and sufficient conditions are assured,

we can parametrize the set of all linear switching stabilizing

(or quadratically stabilizing) compensators for the switching

plant.

The results have several implications as well as applications.

For instance, the complete parametrization is given in a form

which is suitable for optimal design, since the closed loop

map is shown to be an affine function of the Youla–Kucera

parameter, the natural extension of the standard linear time–

invariant theory. We will investigate on what we call the

paradox of the “zero transfer functions compensator”. Given

a system which is stable in any fixed configuration, but

switching unstable, under the given conditions, we can assure

switching stability by means of a switching compensator with

the (surprising) property of having zero transfer function for

each fixed configuration. The explanation of this paradox is

quite intriguing. Precisely the switching compensator must be

properly realized in such a way that its observable and reach-

able subsystems interact only during switching. We propose a

“switching manager” control as an application of this paradox.

The paper is organized as follows. After the formulation

of the problem in Sections II, the main results are all stated

in Section III without proofs which are essentially based

on previous results on non–quadratic Lyapunov functions

(see [25], [26], [27] and [9] for a survey), on generalized

observers [28], [29] and duality properties between observer

and state feedback design [15]. In the quadratic stabilization

case the results are based on standard LMI techniques [10].

The parametrization of all stabilizing compensators is achieved

by generalizing ideas described in [5] (see also [6]). The

implications are described in section IV and we finally discuss

the results in section VI. The present article is the conference

version of [30] and, for space reasons, the proofs and most

of the examples in the original paper have been omitted. We

refer the interested reader to [30] for the full version.

II. DEFINITIONS AND PROBLEM STATEMENT

Consider the time–varying system

δx(t) = Aix(t)+Biu(t)
y(t) = Cix(t)

(1)

where x(t) ∈ IRn, u(t) ∈ IRm, y(t) ∈ IRp. δ represents the

derivative in the continuous–time case and the one–step shift

operator δx(t) = x(t +1) in the discrete–time case. We assume

that the plant matrices can switch arbitrarily, precisely that

i = i(t) ∈ I = {1,2, . . . ,r} and that for each i the plant

(Ai, Bi, Ci) is stabilizable. For the simple notations, we have

dropped the time t from the index i with the understanding that

(Ai,Bi,Ci) = (Ai(t),Bi(t),Ci(t)). For this system, we consider the

class of linear switching controllers

δz(t) = Fiz(t)+Giy(t)
u(t) = Hiz(t)+Kiy(t)

(2)

where, again, i = i(t) ∈ I , and (Fi,Gi,Hi,Ki) =
(Fi(t),Gi(t),Hi(t),Ki(t)). In the following, it will be assumed

that (a) the number of switching instants is finite (although it

may be arbitrarily large, in the continuous–time case) on every

finite interval and (b) the switching time is zero for both plant

and compensator and there is no delay in the communication

between the plant and the controller, which knows exactly

the current y(t) and configuration i(t). We stress that the

finite-switching assumption is not actually a restriction (it

can be easily dropped and avoid the well–posedness issue),

whereas the no-delay assumption might be a restriction in

practice, though fairly acceptable in most plants.

The closed loop system matrix achieved from (1) and (2)

becomes

Acl
i =

[

Ai +BiKiCi BiHi

GiCi Fi

]

(3)

For this system (or any arbitrary switching system) we adopt

the following stability definitions.

Definition 2.1: The system governed by matrices Acl
i , i(t)∈

I is: (a) Hurwitz (Schur) stable, if for every fixed value i,

its eigenvalues have negative real parts (respectively modulus

less than one), (b) switching stable, if it is asymptotically

stable for any switching signal i(t) ∈ I , and (c) quadratically

stable, if these matrices share a common quadratic Lyapunov

function.

In the sequel, when we will talk about “stability”, we will

always refer to “switching stability”. It is well established that

the three definitions are not equivalent, precisely (c)⇒(b)⇒(a)

[8] (we remind that we assumed zero dwell time). In a

Lyapunov framework, switching stability is equivalent to the

existence of a Lyapunov function which is a polyhedral norm

(see [26], [27], [25]). We will use this fact later.

The next two problems are addressed in this paper.

Problem 1: Given the switching plant represented by (1),

does there exist a family of matrices (Fi,Gi,Hi,Ki), i ∈ I such

that the system governed by (3) is switching stable?

Once the previous problem has received a “yes” answer, the

next question is in order.

Problem 2: Given a set of transfer functions Ki(s) assuring

that the ith closed loop system is Hurwitz (respectively Schur),

namely stable for fixed i, does there exist realizations for the

Ki(s) such that the system is switching stable?

In the next section we come up with a necessary and

sufficient condition for Problem 1 and with an “always yes”

reply to the question of Problem 2.

III. MAIN RESULTS

A. Necessary and sufficient stabilizability conditions

To state our results we need a technical definition. Given a

square matrix P, ‖P‖l , l = 1, ∞, denotes the standard induced

matrix norms with respect to ‖ · ‖l norm for vectors.

Definition 3.1: The square matrix M is of class H1 if there

exists τ > 0 such that ‖I +τM‖1 < 1. It is of class H∞ if there

exists τ > 0 such that ‖I + τM‖∞ < 1.

The above classes, introduced to state the continuous–time

conditions, are associated to existing algorithms based on the

Euler approximating systems (see [9]). The following holds:

Theorem 3.1: The following two statements are equivalent

for continuous–time (resp. discrete–time) systems.
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i) There exists a linear switching compensator (2) for the

switching plant (1) which assures switching stability to the

closed loop system.

ii) There exist µ× µ matrices Pi ∈ H1 and ν× ν matrices

Qi ∈ H∞, (respectively matrices ‖Pi‖1 < 1, and ‖Qi‖∞ < 1),

m×µ matrices Ui, p×ν matrices Li , n×µ matrix X , and ν×n

matrix R , of full row rank and full column rank, respectively,

such that

AiX +BiUi = XPi (4)

RAi +LiCi = QiR (5)

Corollary 3.1: If the necessary and sufficient conditions are

satisfied, then a stabilizing compensator is given by

δw(t) = Qiw(t)−Liy(t)+RBiu(t) (6)

x̂(t) = Mw(t) (7)

δz(t) = Fiz(t)+Gix̂(t) (8)

u(t) = Hiz(t)+Kix̂(t)+ v(t) (9)

where v(t) = 0 (the reason of introducing this dummy signal

will become clear later). The matrix M is any left inverse of

R (MR = I), while (Fi,Gi,Hi,Ki) can be computed as

[

Ki Hi

Gi Fi

]

=

[

Ui

Vi

] [

X

Z

]−1

(10)

where Z is any complement of X which makes the square

matrix invertible and Vi = ZPi. The compensator is of order

ν+µ−n.

Remark 3.1: The compensator has a separation structure.

Indeed it can be shown that x̂(t) estimates asymptotically x(t)
since ‖Rx−w‖∞ → 0 and the dynamic compensator having

z as state variable is a dynamic state feedback stabilizing

compensator. The state feedback condition (4) was previously

given in [31].

Unfortunately, the computation of the solution of (4) and (5)

may be non trivial. Indeed, (4)–(5) are bilinear and therefore

they cannot be easily solved for fixed dimensions ν and µ of R

and X (which is equivalent to fix the compensator complexity).

However they can be solved by means of known iterative

procedures to determine polyhedral Lyapunov functions [32],

[33], [9] although there is no upper bound for the order of the

compensator, which depends on the system data.

B. The quadratic stabilization case

If we strengthen our assumption, invoking quadratic stabi-

lizability, the following holds

Theorem 3.2: The following two statements are equivalent

in the continuous–time case.

i) There exists a linear switching compensator (2) for the

switching plant (1) assuring switching quadratic stability.

ii) There exist positive definite symmetric n×n matrices P

and Q, and m×n matrices Ui and n× p matrices Yi such that

PAT
i +AiP+BiUi +UT

i BT
i < 0 (11)

AT
i Q+QAi +YiCi +CT

i Y T
i < 0 (12)

In the discrete–time case the LMIs are different, precisely, i)

is equivalent to the next statement.

iii) There exist symmetric positive–definite n× n matrices

P and Q, and m× n matrices Ui and n× p matrices Yi such

that
[

P (AiP+BiUi)
T

AiP+BiUi P

]

> 0 (13)

[

Q (QAi +YiCi)
T

QAi +YiCi Q

]

> 0 (14)

Corollary 3.2: If the necessary and sufficient conditions

are satisfied, then a stabilizing compensator is given by the

standard observer + feedback compensator

δx̂(t) = (Ai +LiCi +BiJi)x̂(t)−Liy(t)+Biv(t)
u(t) = Jix̂(t)+ v(t)

(15)

with v(t) = 0 (again, this signal will be used later), and

Ji = UiP
−1 and Li = Q−1Yi

where P and Q are the matrices defined in (11) and (12).

Remark 3.2: Also this compensator has an observer–based

structure. It is of order n, and thus of fixed complexity. This

shows that, for switching systems, quadratic stabilizability is

equivalent to quadratic stabilizability with a compensator of

at most the same order of the plant.

Note that (11)–(12) and (13)–(14) are LMIs, thus easily

solvable. We stress that this kind of conditions are known

in the LMI literature for both state feedback and observer

design [12], [13], [34]. They have been proposed for instance

for LPV systems [12] (see also [10]). In [12] when the LMIs

are stated (Th. 4.3) it is assumed that B and C are certain

matrices. This is a critical assumption in the LPV case but not

an issue in the switching case. The conditions based on LMIs

and quadratic functions lead to efficient algorithms but they are

conservative. Indeed, there are switching stable systems which

do not admit quadratic Lyapunov functions. Less conservative

results can be achieved if one considers synthesis results based

on parameter–dependent Lyapunov functions [14], [35], [36].

C. The set of all stabilizing compensators

In this section, we consider the problem of parametrizing

all the switching compensators which can be associated with a

switching plant. An efficient parametrization setup is achieved

by means of an observer–based pre-compensator and an input

injection [5] (see also [6]). We adapt such a structure (which

can be derived if the provided stabilizability conditions are

satisfied) to switching plants. Once the pre-compensator is

determined, the free parameter is a proper stable transfer

function which must be properly realized, in agreement with

the results presented in [22] for the case of a single plant.

Henceforth, we will always assume stabilizability conditions

(quadratic stabilizability) are satisfied. The main result of this

section is simply stated as follows.

Theorem 3.3: Assume that the necessary and sufficient con-

ditions for switching stabilizability of Theorem 3.1 (switching

quadratic stabilizability of Theorem 3.2) are satisfied. Then,
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given any arbitrary family of transfer functions Ki(s), i =
1, . . . ,r each stabilizing the i-th plant, there exists a suitable

realization for each of them such that the closed loop system

is switching stable (switching quadratically stable).
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Figure 1. The observer–based compensator structure

The realization of such compensator Ki(s) is derived from

the previously introduced regulators and is illustrated in Fig.1.

More precisely, consider the observer–based compensator (6)-

(9) or (15) and, instead of assuming v ≡ 0, take

v(s) = Ti(s)(ŷ(s)− y(s))

where ŷ(t) = Cix̂(t) is the estimated output, precisely

u(s) = ustab(s)+ v(s) = ustab(s)+Ti(s)(Cix̂(s)− y(s)) (16)

In other words, ustab is derived by means of the feedback

(6)–(9) (or (15)), and Ti(s) is a stable transfer function (the

Youla–Kucera parameter [23], [24]). Note that the structure in

Fig. 1 is valid for both type of observer–based compensators

(indeed, (6)–(7) parametrize all type of observers for fixed i

[29], [28]) including (15) as special case with Qi = Ai +LiCi,

R = I and M = I.

The transfer function Ti(s) can be selected in such a way

that the resulting compensator transfer function is the desired

one Ki(s). The only problem with Ti(s) is its implementa-

tion, which cannot be arbitrary. In this case it is sufficient

to exploit the idea of [22] and realize Ti(s) as Ti(s) =

Hi
(T )

(

sI −F
(T )
i

)−1

G
(T )
i +K

(T )
i in such a way that the family

F
(T )
i is switching stable. This results in switching stability

and transfer function matching for any i. The procedure for

the control synthesis is the following

Procedure 3.1: Given Ki(s) i = 1, . . . ,r each stabilizing

(Ai,Bi,Ci) perform the following operations.

1. Check the necessary and sufficient conditions and if the

system passes the test synthesize any stabilizing control of

the form (6)–(9) (or (15)).

2. Select the free stable parameter Ti(s) in such a way that the

ith compensator has transfer function Ki(s). This is always

possible according to Lemma 10.2 in [5].

3. Select a Hurwitz (Schur) realization for each Ti(s). Make all

these realizations of the same order, possibly adding dummy

non reachable and non–observable asymptotically stable dy-

namics: Ti(s) = Ĥ
(T )
i

(

sI − F̂
(T )
i

)−1

Ĝ
(T )
i + K̂

(T )
i

4. Find a switching–stable realization
(

F
(T )
i ,G

(T )
i ,H

(T )
i ,K

(T )
i

)

for Ti(s) as follows. Take the (arbitrary) previous realizations

Ti(s) : (F̂
(T )
i , Ĝ

(T )
i , Ĥ

(T )
i , K̂

(T )
i ) and apply a transformation to

each of them in such a way that all the F
(T )
i share ‖ · ‖2

2, the

square of the Euclidean norm, as a Lyapunov function. This

can be done by solving the Lyapunov equations F̂
(T )T

i Πi +

ΠiF̂
(T )
i = −I and denoting by Ωi the positive square root of

Πi, say such that Πi = ΩT
i Ωi. Apply the transformation [22]

(an alternative is to use proper reset maps) F
(T )
i = ΩiF̂

(T )
i Ω−1

i ,

G
(T )
i = ΩiĜ

(T )
i , H

(T )
i = Ĥ

(T )
i Ω−1

i , K
(T )
i = K̂

(T )
i (in the discrete–

time case we have to use the equivalent Lyapunov equations).

5. Realize the compensator as in Fig. 1.

The next corollary formalizes the fact that, if we are seeking

a single compensator transfer function for all plants, our

parametrization works as well.

Corollary 3.3: Assume that the stabilizability conditions

are satisfied. Then a single compensator C(s) stabilizes the

plant (under switching) if and only if it can be represented

as in Fig. 1 with a proper Ti (suitably realized). Moreover,

if there exists C(s) such that all the closed loop systems are

Hurwitz (Schur) stable, then there exist proper realizations for

C(s) such that the overall system is switching stable.

Remark 3.3: Clearly, we have no guarantee that a single

realization of a compensator which assures Hurwitz (Schur)

stability preserves stability also under switching. This property

becomes true under suitable and, in general, different realiza-

tions of such a compensator.

IV. IMPLICATIONS OF THE RESULTS

The proposed scheme can be successfully adopted to de-

couple the solutions of the following problems: (a) achieving

optimality of any fixed configuration i and (b) assuring stabil-

ity under switching.

A. Switching systems and optimization

Consider the problem of optimizing a set of transfer func-

tions

δx(t) = Aix(t) +Biu(t) +Bω
i ω(t)

y(t) = Cix(t) +D
y,ω
i ω(t)

ξ(t) = Eix(t) +D
ξ,u
i u(t) +D

ξ,ω
i ω(t)

(17)

according to arbitrary criteria. The following holds true.

Proposition 4.1: If the necessary and sufficient conditions

are satisfied, we can derive an optimal control law for each

plant of the family and such that switching stability is assured.

Once we have computed the observer–based pre–compensator

the i-th input output map is of the form

ξ(s) = [M
ξ,ω
i (s)+M

ξ,v
i (s)Ti(s)M

o,ω
i (s)]ω(s)
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where M
ξ,ω
i (s), M

ξ,v
i (s) and M

o,ω
i (s) are the ω–to–ξ, v–to–ξ

and ω–to–o transfer functions for the i-th configuration. This

is an important feature, since it allows for the well–known

Wiener-Hopf design [24] for the ith transfer function (which

is affine with respect to Ti).

Remark 4.1: The procedure can be extended to achieve

“contractive performances” precisely to assure the discrete–

time condition ‖x(t)‖ ≤ γ1‖x(0)‖ λt or the continuous–time

condition ‖x(t)‖ ≤ γ2‖x(0)‖ eβt
. The reader is referred to [30]

for details.

B. The zero transfer functions paradox

Assume that we are given a plant composed by a (finite)

family of switching systems which are Hurwitz (Schur), but

not switching stable. According to the developed theory, if this

plant is switching stabilizable, then we can apply a switching

compensator such that the system is switching stable, but, at

the same time, for any fixed i the compensator transfer function

is Ki(s) ≡ 0. A potential application of this property is what

we call the switching manager, a device which leaves the plant

uncontrolled as long as it remains on a fixed configuration (for

instance because optimal compensators are already applied for

each i) and activates the control only under switching. As an

example, consider the dynamic system with two vertices

ẋ =

[

0 1

−2+ γ −0.01

]

x+

[

0

1

]

u

y =
[

1 0
]

x

where γ ∈ {−1, 1}. Denote by A1 and A2 the values of the

state matrix for γ =−1 and 1, respectively. Though each Ai is

clearly stable, the time-varying system governed by the switch

rule γ(t) = sign[x1(t)x2(t)] (xi represents the state component)

is unstable (see [8] for details). By means of the next observer

and state feedback gains

L1 = L2 =
[

−10 0
]T

, J1 = J2 =
[

0 −10
]

switching stability is assured and hence, by realizing the

switching regulator as

˙̂x = Aix̂+Li(Cix̂− y)+Biu

u = Jix̂+ v

ż = ΩiAiΩ
−1
i z+ΩiLi(Cix̂− y)

v = −JiΩ
−1
i z

(18)

with

Ω1 =

[

14.142 0.0075

0.0075 8.165

]

, and Ω2 =

[

10.001 0.0245

0.025 10.00

]

we obtain a zero-transfer function regulator for each i and

switching stability.

V. EXAMPLE

Consider a very simple (academic) system with two vertices

(including input and measurements noises)

ẋ(t) =

[

−1 1

1 −1

]

x(t)+Biu(t)+wx(t)

y(t) = Cix(t)+wy(t)

where the input and output matrices are

C2 = BT
1 =

[

1 0
]

, C1 = −BT
2 =

[

0 1
]T

For this model, with specific cost indexes and noise covari-

ances, we computed two optimal LQG regulators Ki(s)

q̇ = (A+BiJi +LiCi)q−Liy

u = Jiq
, i = 1,2

with

J1 =
[

−3167.6 −13655.7
]

J2 =
[

20491.1 10003.1
]

L1 =
[

−27.64 −13.50
]T

L2 =
[

−13.50 −27.64
]T

Such regulators are such that, if used alternatively with sam-

pling time T = 0.1, result in an unstable switching behaviour

(it is sufficient to check that exp[Acl
1 T ]exp[Acl

2 T ] is unstable).

Since the above switching system passes the switching

stabilizability test (and the quadratic stability test, which can

be checked via the package CVX [37]), it was possible to find

proper realizations for the determined optimal controllers, K1

and K2. Fig. 2 depicts the time evolution of the system state

and the switching signal with the switching stable realizations

of the optimal controllers.
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1
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Figure 2. The state and switching signal evolution

VI. DISCUSSION AND CONCLUSIONS

In this paper, necessary and sufficient stabilizability con-

ditions for the existence of a stabilizing and quadratically

stabilizing switching linear compensators for a switching plant

were reported. If these conditions are satisfied, no matter

how we associate a family of compensators with a family of

plants, then there exist realizations for which the closed loop

system is switching stable. We have shown how to derive these

realizations. The results have several implications such as the

“zero transfer functions paradox”, with its application to the

switching manager, the optimal Wiener-Hopf synthesis and

contractive design. We conjecture that important connections

can be found with recent interesting results proposed in [38]

concerning l∞ performance optimization.
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The stabilizability conditions suffer of the well known insur-

mountable problem (which is, even for autonomous systems,

NP-hard [39]) of the complexity of the required algorithms

and compensator. By resorting to quadratic stabilizability,

efficient LMI algorithms are involved and the compensator

has an a–priori fixed complexity. The results are suitable for

several extensions and investigations and we believe that there

are several interesting issues to be investigated such as the

case of delayed information on the current configuration i or

the case in which the controller has to identify the current

system configuration. For the latter problem the observer–

based structure of the proposed compensator seems to be

promising [40], [34]. Another intersting issue is the switched

case, namely the discrete variable is a control signal (see

for instance [41]), for which the presented results could be

successfully applied to enforce stability jointly with another

scheme which controls switching to optimize performances.

Another issue worth investigating is the extension to LPV

systems rather than switching systems. We conjecture that as

long as B and C are constant and known matrices, results along

these lines can be established.
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