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Abstract— This paper introduces a new approach to H2

robust filtering design for discrete LTI systems subjected to
linear fractional parameter uncertainty representation. We
calculate a performance certificate in terms of the gap between
the lower and the upper bounds of a minimax programming
problem, which defines the optimal robust filter and the associ-
ated equilibrium cost. The calculations are performed through
convex programming methods, applying slack variables, known
as multipliers, to handle the fractional dependence of the plant
transfer function with respect to the parameter uncertainty.
The theory is illustrated by means of an example borrowed
from the literature and a practical application involving the
design of a robust filter for the load voltage estimation on a
transmission line with a stub feeding an unknown resistive load.

I. INTRODUCTION

Over the last years the problem of robust estimation

for uncertain dynamic systems in the context of convex

programming has been widely studied. One approach to this

problem is to consider it in the Kalman filtering context [1],

in which the uncertain system is assumed to be subjected

to white noise, leading to the formulation of the H2 robust

filter design problem. In other words, the goal is to design a

unique linear filter in order to minimize the worst case mean

square estimation error, able to cope with different models

generated by a set of uncertain parameters.

Many works in the literature, as for example [3], [4],

[5], [12], [13], address the considered problem when its

state space matrices representation depend linearly on the

uncertain parameters. On the other hand, some recent works

faced the more general problem of robust filter design for

uncertain linear fractional transformation (LFT) systems (see

[6], [8] and [11]). For continuous-time systems [11] presents

necessary and sufficient conditions to design a robust H2

filter, but under the difficulty of an appropriate choice of

the multiplier order and dynamics. In this paper we consider

discrete LTI systems whose parameter uncertainty, supposed

to belong to a polytopic set, is described in the LFT form.

This assumption enables us to take into account the nonlinear

dependence of the state space matrices with respect to the

parameter uncertainty, a situation that often occurs in prac-

tice, as in the transmission line model presented afterwards.

The procedure adopted here is based on the recent results

of [4] and [8], where we propose to determine lower and
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upper bounds to the optimal H2 cost for the robust filtering

problem, as a way to certify the optimality gap and, by

consequence, the distance from a particular filter to the

optimal robust one. In a first step we calculate the lower

bound of the cost and provide a filter, prior of eventual poles

and zeros cancellations, of order equal to the order of the

plant times the the number of vertices of the uncertainty

convex polytopic domain. In a second step we determine a

robust filter of order equal to the order of the one associated

to the lower bound using the previous calculations and

well known results on multiplier theory developed in [7].

From [4] we conclude that the greater order of the filter

compared to the order of the plant appears to be essential to

reduce conservatism, yielding more accurate results against

the previous design procedures.

In the next section we state the minimax H2 robust

filtering problem and the model for the uncertain system

to be dealt with along the text. In sections III and IV

we proceed by the calculation of lower and upper bounds,

respectively, to the equilibrium solution of the minimax

problem, by means of LMIs [2], and the corresponding

optimistic and robust filter parametrization. In Section V we

analyze the application of the results obtained so far to an

example borrowed from the literature. Section VI is devoted

to transmission lines modelling under load uncertainty and

to the problem of its one-end voltage estimation when it is

subject to reflections due to impedance mismatch and stub

connection. Finally, Section VII contains the conclusion and

final remarks.

The notation used throughout is standard. Capital letters

denote matrices and small letters denote vectors. For scalars,

small Greek letters are used and N = {1, · · · , N}. For real

matrices or vectors (′) indicates its transpose. For square

matrices Tr(X) denotes the trace function of X being equal

to the sum of its eigenvalues and diag(X,Y ) generates

a block diagonal matrix in whose main diagonal are the

matrices X and Y . For the sake of easing the notation

of partitioned symmetric matrices, the symbol (•) denotes

generically each of its symmetric blocks. For matrices or

transfer functions Xλ denotes the convex combination Xλ :=
∑N

i=1 λiXi, where λ belongs to the unitary simplex

Λ =

{

λ ∈ R
N :

N
∑

i=1

λi = 1 , λi ≥ 0

}

(1)

Finally, the following notation

G(ζ) = C(ζI − A)−1B + D =

[

A B
C D

]

(2)
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Fig. 1. Filtering Structure

is used for transfer functions, where the real matrices A, B,

C and D of compatible dimensions define a possible state

space realization. Besides, G(ω) denotes G(ζ) calculate at

ζ = ejω, where ω ∈ R. For any real signal ξ, defined in the

discrete-time domain, ξ̂ denotes its Z transform.

II. PROBLEM FORMULATION

Figure 1 shows the basic filtering structure design in terms

of transfer functions, where F (ω) denotes the filter transfer

function to be designed and H(ω) denotes the transfer

function of an LTI system subject to structured uncertainties

characterized by the following state space model

x(k + 1) = Ax + Eq + Bw

p = C

[

x
w

]

+ Dq

q = ∆p , ∆ ∈ Ξ
y = Cyx + Dyw
z = Czx + Dzw

(3)

where x ∈ R
n is the state, q ∈ R

m and p ∈ R
r are internal

variables, w ∈ R
mw is the external disturbance, y ∈ R

ry is

the measured output, z ∈ R
rz is the output to be estimated

and Ξ is the set of all feasible parameters uncertainty, defined

by the convex hull

Ξ = co{∆i : i ∈ N} (4)

generated by N known matrices ∆i for all i ∈ N. Hence,

any element of the set Ξ can be written in the form ∆λ for

some λ ∈ Λ. Furthermore, all matrices are supposed to be

of compatible dimensions, yielding the following definition

of the transfer function H(ω)

H(λ, ω) =

[

T (λ, ω)
S(λ, ω)

]

=





A∆(λ) B∆(λ)
Cy Dy

Cz Dz



 (5)

where

[A∆(λ) B∆(λ)] = [A B] + E(I − ∆λD)−1∆λC (6)

makes clear the nonlinear dependence of the state space

representation of the plant, with respect to λ ∈ Λ, whenever

D 6= 0. It is assumed that det(I −∆λD) 6= 0 for all λ ∈ Λ.

Notice that this model is quite general and reduces to the

structured LFT description considered in [6] from a particular

choice of matrices C, D, E and the structure of ∆ ∈ Ξ.

For this system, the filter transfer function F (ω) has to be

designed in such a way that its output is the best estimate of

ẑ that can be obtained from the data contained in ŷ. Formally,

the problem is expressed as

min
F∈F

max
λ∈Λ

J(F (ω),H(λ, ω)) (7)

where J(F (ω),H(λ, ω)) = ‖EF (λ, ω)‖2
2 is the H2 squared

norm of the transfer function from the exogenous input ŵ
to the estimation error ê, that is EF (λ, ω) = S(λ, ω) −
F (ω)T (λ, ω), and the set F is used to impose some desired

characteristics to the optimal filter as, for instance, asymp-

totical stability.

However, the equilibrium solution of (7) is very difficult to

calculate (see [10]). The main reason is the highly nonlinear

dependence of the transfer function H(λ, ω) with respect

to λ ∈ Λ, which makes the max problem in (7) hard to

solve. To circumvent this difficulty, in this paper we adopt

the same reasoning presented in [4] and we generalize those

results, as done in [8], to cope with the linear fractional

representation of the uncertainty. First we determine a lower

bound to (7), by solving a problem that can be written in

terms of LMIs. The optimal optimistic filter obtained by

this way has order equal to the order of the plant times

the number of vertices of the unitary simplex Λ (see [4],

[5]), putting aside eventual poles and zeros cancellations.

Afterwards, the filter associated to the lower bound defines a

parametrization which enables us to determine a robust filter

with a certification of the distance to the optimal robust filter

provided by the equilibrium solution of problem (7).

III. OPTIMISTIC PERFORMANCE

In this section our purpose is to calculate a lower bound to

the equilibrium cost (7), since in the general case of uncertain

polytopic systems its global solution is virtually impossible

to be exactly calculated. A lower bound of (7) is determined

from

min
F∈F

max
λ∈Λ

J(F (ω),H(λ, ω)) ≥

≥ min
F∈F

max
i∈N

J(F (ω),H(ei, ω))

≥ min
F∈F

max
λ∈Λ

∥

∥

∥

∥

∥

N
∑

i=1

λi (S(ei, ω) − F (ω)T (ei, ω))

∥

∥

∥

∥

∥

2

2

(8)

where ei is the i-th row of the N × N identity matrix and

it defines one of the N vertices of the parameter polytope

Λ. The first inequality follows from the fact that the set of

all vertices of Λ is a subset of Λ and the last one comes

from the convexity of the functional ‖ · ‖2
2, implying that the

indicated maximum is attained at one vertex of the convex

polytope Λ.

Using the results of [4], the minimax problem on the right

hand side of (8) can be exactly solved. Thus, a lower bound

of the equilibrium solution of (7) can be stated as

JL = min
F∈F

max
λ∈Λ

‖EFλ(ω)‖
2
2 (9)

where the error transfer function EFλ(ω) = Sλ(ω) −
F (ω)Tλ(ω) depends linearly on λ ∈ Λ. Considering the filter
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state space realization

FL(ω) =

[

AL BL

CL DL

]

(10)

and the matrices of compatible dimensions AE =
diag(A∆(e1), · · · , A∆(eN )), CY = [Cy, · · · , Cy], CZ =
[Cz, · · · , Cz] and B(λ) = [λ1B∆(e1)

′, · · · , λNB∆(eN )′]′,
the error transfer function EFλ(ω) produced by the filter

(10) is given by

EFλ(ω) =





AE 0 B(λ)
BLCY AL BLDy

CZ − DLCY −CL Dz − DLDy



 (11)

where it is noticed that only the input matrix B(λ) is affected

by the parameter uncertainty λ ∈ Λ and matrix AE is of

dimension nN × nN , in accordance to the fact that the

transfer functions Sλ(ω) and Tλ(ω) are of order nN (prior

to possible poles and zeros cancellations). Under the error

state space realization (11), the solution of problem (9) is

addressed by the next theorem.

Theorem 1: The filtering design problem (9) is equivalent

to the convex programming problem

JL = inf
σ,Wi,X,L,K

{σ : Tr(Wi) < σ , i ∈ N} (12)

where Wi and X are symmetric matrices and K, L are

matrices of compatible dimensions satisfying




Wi • •
XB(ei) + LDy X •

Dz − KDy 0 I



 > 0 (13)

for all i ∈ N and




X • •
XAE + LCY X •
CZ − KCY 0 I



 > 0 (14)

Proof: The proof of this theorem is based on the

previous result of [4] and [5].

Concerning this theorem, some facts must be pointed out.

First, the linearity of the error transfer function EFλ(ω) with

respect to λ ∈ Λ is crucial to obtain the result of Theorem

1 since, as proven in [5], for the special class of polytopic

systems, such that H(λ, ω) depends linearly on λ ∈ Λ, it

provides the global optimal solution of problem (7), and (8)

holds with equality. Second, from the optimal solution of the

convex problem (12), the optimal optimistic filter is given by

(see [5], [4])

FL(ω) =

[

AE + X−1LCY −X−1L
CZ − KCY K

]

(15)

Although this obtained filter has order nN it has been

verified in [4], by means of several examples, that due to

eventual poles and zeros cancellations its order is, in general,

sensibly smaller than nN . However, generally, the order

of FL(ω) remains greater than n, a fact that decisively

contributes to improve performance. Finally, for perfectly

known systems (N = 1) Theorem 1 provides the celebrated

Kalman filter [1].

Based on the previous calculations, the next section is

devoted to determine a robust filter and the associated upper

bound to the H2 optimal equilibrium cost which defines,

together with the lower bound, a certificate for robust per-

formance.

IV. ROBUST PERFORMANCE

Once we have determined a filter FL(ω) associated to the

minimum lower bound of the filter design problem (7), our

goal in this section is to design a robust filter FH(ω) ∈ FH ⊂
F associated to a robust performance level JH guaranteed

for all λ ∈ Λ. Note that FL(ω) is not a robust filter, since its

performance level JL can not be guaranteed for all λ ∈ Λ
or, in other words, for all ∆ ∈ Ξ.

Adopting the same reasoning presented in [4], we propose

to choose the set FH as the set of all LTI causal filters of

the form

FH(ω) =

[

AL BL

CH DH

]

(16)

where AL and BL are the matrices from the already deter-

mined state space realization of the optimistic filter FL(ω),
in (15), and CH and DH , of compatible dimensions, are to

be determined. The rationale behind this approach is that

FL(ω) ∈ FH for an appropriate choice of matrices CH and

DH . Thus, we can define an upper bound to problem (7) as

being

min
F∈F

max
λ∈Λ

‖EF (λ, ω)‖2
2 ≤ min

F∈FH

max
λ∈Λ

‖EF (λ, ω)‖2
2 (17)

where EF (λ, ω) = S(λ, ω)−F (ω)T (λ, ω) is the estimation

error transfer function produced by a filter F (ω) ∈ FH .

The main difficulty we have to face in order to solve the

problem stated on the right hand side of (17) stems from

the nonlinear dependence of transfer functions S(λ, ω) and

T (λ, ω) with respect to the uncertain parameter λ ∈ Λ.

Considering the state space realization of any feasible filter

FH(ω) ∈ FH , given by (16), and taking into account the

state space equations (3), the dynamic of the estimation error

is governed by

x(k + 1) = Ax̃ + Eq + Bw

p = C

[

x̃
w

]

+ Dq

q = ∆p , ∆ ∈ Ξ
e = Cex̃ + Dew

(18)

where x̃′ = [x′
F x′] is the state vector composed by the

state vectors of the filter and the plant, respectively, and the

indicated matrices are given by

A =

[

AL BLCy

0 A

]

, E =

[

0
E

]

, B =

[

BLDy

B

]

(19)

C =
[

0 C
]

, D = D (20)

and

Ce =
[

−CH Cz − DHCy

]

, De = Dz − DHDy (21)

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeA02.4

1904



Thus, the transfer function from the external disturbance ŵ
to the estimation error ê can be readily calculated as being

EF (λ, ω) =

[

A∆(λ) B∆(λ)
Ce De

]

(22)

where

[A∆(λ) B∆(λ)] = [A B] + E(I − ∆λD)−1∆λC (23)

which makes clear the mentioned nonlinear dependence of

S(λ, ω) and T (λ, ω) with respect to ∆ ∈ Ξ and, conse-

quently, to λ ∈ Λ. Taking into account this state space

realization for the estimation error EF (λ, ω), the following

theorem gives an upper bound to problem (7) and the

corresponding robust filter.

Theorem 2: Consider the filter FH(ω) given in (16), a

symmetric multiplier Π satisfying the infinity dimensional

linear constraint
[

I
∆λ

]′

Π

[

I
∆λ

]

> 0 , ∀λ ∈ Λ (24)

and positive definite matrices Pi and Wi, of appropriate

dimensions, satisfying the LMIs








Pi • • •
A′Pi Pi • •
B′Pi 0 I •
E ′Pi 0 0 0









−





0 0
C′ 0
D′ I



Π





0 0
C′ 0
D′ I





′

> 0

(25)




Wi • •
C′

e Pi •
D′

e 0 I



 > 0 (26)

for all i ∈ N. Then, the H2 squared norm of the estimation

error satisfies ‖EF (λ, ω)‖2
2 <

∑N

i=1 λiTr (Wi) for all λ ∈ Λ.

Proof: This proof depends on several algebraic manip-

ulations being omitted here due to space limitations.

At this point some remarks are appropriate. First, the

result of this theorem provides a slight generalization of the

previous results on multiplier theory from [7], since non-

independent parameter uncertainties acting on both matrices

A and B can be handled with no additional difficulty.

Second, the constraints (24) represent a set of infinity linear

matrix inequalities, one for each λ ∈ Λ. However it can

be converted into a set of N LMIs, each one corresponding

to a vertex of the unitary simplex Λ, considering the set of

multipliers of the form

Πi =

[

Ri −G
−G′ −Q

]

, ∀i ∈ N (27)

where the indicated matrices are of compatible dimensions

and Q > 0. Then it is verified that the LMIs
[

I
∆i

]′

Πi

[

I
∆i

]

> 0, ∀i ∈ N (28)

assure that (24) holds. As a consequence of this fact the

robust filter design problem can be stated as

JH = inf
σ,Wi,Pi,Πi,CH ,DH

{σ : Tr(Wi) < σ , i ∈ N} (29)

where the indicated matrices satisfy (25) , (26) and (28), for

all i ∈ N.

V. EXAMPLE

For comparison purpose we consider the second order

discrete-time system presented in [6], where its LFT rep-

resentation (3) is given. In the second column of Table I we

present the guaranteed cost Ju given by [6] for LFT and NFT

(Nonlinear Fractional Transformation) descriptions of the

plant, each of them connected to proper and strictly proper

filters. The following columns show the upper bound JH ,

the exact H2 squared guaranteed cost calculated by gridding

and the lower bond JL. While in [6] the obtained filters are

of order 2, for this example we have no cancellations of

poles and zeros on FL(ω), implying that the robust filters

are of order 4. From Table I, we can see that the best result

provided in [6] for proper filters presents the H2 guaranteed

cost Ju = 0.1524 while our method provides a proper filter

with H2 guaranteed cost JH = 0.0867. Hence, in this case,

the cost reduction is about 43% and the gap between lower

and upper bounds is approximatively 23%.

For strictly proper filters the results are more accurate.

Indeed, our method is able to determine the (almost) opti-

mal H2 robust filter (see problem (7)) since the difference

between JH and JL is less than 0.5%.

VI. PRACTICAL APPLICATION

At this point we propose to apply the previous robust filter-

ing design method to the estimation of the load-end voltage

on a transmission line. For this we consider a transmission

line with negligible losses, of length 2l = 0.4 km, whose

parameters are C = 95 nF/km and L = 0.26 mH/km,

which define Z0, the characteristic impedance [9]. The line

is connected to a voltage source of internal impedance Zg,

which feeds a resistive load Zc. At a distance l from the

voltage source there is a stub of length l, with characteristic

impedance Z0, feeding another resistive load Zd.

It is assumed that the voltage on the load Zc is sampled

with period Ts = 1 µs, corresponding to the interval of time

for a voltage wave to travel from the voltage source to the

middle of the line. We denote, at each instant of time k ≥
0, vci(k) and vcr(k) as the incident and reflected voltages

on the resistive load Zc, vdi(k) and vdr(k) as the incident

and reflected voltages on the stub load Zd and vgi(k) and

vgr(k) as the incident and reflected voltage waves at the

voltage source terminal of the line. The voltage provided

by the source is indicated as V (k). For the discrete-time

modelling of the transmission line we also need to define the

reflection coefficients at the source, at the load end, at the

stub end and at the middle of the line as being, respectively,

Γg , Γc, Γd and Γm (see [9]). Since Γm depends only of the

characteristics impedance of the line and the stub, it is given

by Γm = −1/3.

Considering the total incident wave at the load end of the

line, at the load end of the stub and at the voltage source,

for each instant of time k ≥ 0 we have

vci(k + 2) = (1 + Γm) [vdr(k) + vgr(k)] + Γmvcr(k)+

+(1 + Γm)
Z0

Z0 + Zg

V (k) (30)
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TABLE I

DISCRETE-TIME EXAMPLE

Method Ju [6] JH maxλ∈Λ J(FH(ω), H(λ, ω)) JL

NFT/proper 0.1524 — — —
LFT/proper 1.2089 0.0867 0.0782 0.0703

NFT/strictly proper 4.1534 — — —
LFT/strictly proper — 4.0556 4.0415 4.0374

vdi(k + 2) = (1 + Γm) [vcr(k) + vgr(k)] + Γmvdr(k)+

+(1 + Γm)
Z0

Z0 + Zg

V (k) (31)

vgi(k + 2) = (1 + Γm) [vcr(k) + vdr(k)] + Γmvgr(k)+

+Γm

Z0

Z0 + Zg

V (k) (32)

Defining the new variables vc(k) = vci(k) + vcr(k) =
(1+Γc)vci(k), vd(k) = vdi(k)+vdr(k) = (1+Γd)vdi(k) and

vg(k) = vgi(k) + vgr(k) = (1 + Γg)vgi(k), some algebraic

manipulations on equations (30)-(32) yield a discrete-time

state space model of the form

η(k + 1) = A∆η(k) + B∆V (k) (33)

where the state vector is defined by

η(k) = [vc(k) vd(k) vg(k) vc(k + 1) vd(k + 1) vg(k + 1)]
′

(34)

The state variables have the following interpretation: vc(k)
is the total voltage on the resistive load Zc, vd(k) is the

total voltage on the stub load Zd and vg(k) is the sum of the

incident and the reflected voltage waves at the voltage source

terminal of the line. Furthermore, the state space matrices in

(33) have the following structure

A∆ =

[

0 I
Φ∆ 0

]

, B∆ =

[

0
Ψ∆

]

(35)

where the inner block matrices are given by

Φ∆ = (1+Γm)







ΓmΓc

1+Γm

(1+Γc)Γd

1+Γd

(1+Γc)Γg

1+Γg

(1+Γd)Γc

1+Γc

ΓmΓd

1+Γm

(1+Γd)Γg

1+Γg

(1+Γg)Γc

1+Γc

(1+Γg)Γd

1+Γd

ΓmΓg

1+Γm






(36)

and

Ψ∆ =
Z0

Z0 + Zg





(1 + Γm)(1 + Γc)
(1 + Γm)(1 + Γd)

Γm(1 + Γg)



 (37)

As previously indicated, the subindex ∆ is used to cope with

parameter uncertainty to be precisely defined in the sequel.

Clearly, the next important step is to validate the proposed

model (33) by comparing its behavior with the transmission

line model available in Matlab/Simulink environment. To this

end we consider V (k) being a pulse sequence with amplitude

10 V, period 1 ms and duty cycle 50%. For simulation

purposes we assume that Zg = 1 kΩ, Zc = 2 kΩ and the stub

end is open implying that Γd = 1. In Figure 2 the dashed

line denotes the Matlab model output for the voltage vc(k)
and the continuous line corresponds to the same output of

0 0.5 1 1.5 2
−1

0

1

2

3

4

5

6

7

t [ms]

v
c
(t

)
[V

]

Fig. 2. Transmission line model simulation

the proposed model (33). The quality of the proposed model

is apparent since only small errors are observed during the

line transient.

Let us now assume that the transmission line operates at

η0(k), due to a known input V0(k), then from the linearity

of the model (33) we can define x(k) = η(k) − η0(k)
and w(k) = V (k) − V0(k) as new state and input signals.

Furthermore, assuming also that all impedances but Zd are

known, the reflection coefficient belongs to a pre-defined

interval [Γdmin
,Γdmax

]. The H2 filtering design problem is

solved in order to determine a linear time invariant filter to

estimate the voltage vd(k) on the stub end from the voltage

measurements at the load end of the line vc(k). This problem

fits exactly as the one considered before (3) by taking as the

nominal matrices

A =

[

0 I
Φ 0

]

, B =

[

0 0
Ψ 0

]

(38)

where the indicated inner matrices are now given by

Φ = (1 + Γm)







ΓmΓc

1+Γm
0

(1+Γc)Γg

1+Γg

Γc

1+Γc
0

Γg

1+Γg

(1+Γg)Γc

1+Γc
0

ΓmΓg

1+Γm






(39)

and

Ψ =
Z0

Z0 + Zg





(1 + Γm)(1 + Γc)
1 + Γm

Γm(1 + Γg)



 (40)

Here the second column added to matrix B refers to the

measurement noise, also included in the vector of exogenous

disturbance w(k). To highlight the dependence of (33) with

respect to the uncertain parameter Γd we define

D =

[

−1 0
0 0

]

, ∆ =

[

Γd 0
0 Γd

]

(41)
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TABLE II

TRANSMISSION LINE FILTERING SIMULATIONS FOR Zg = 1 kΩ AND Zc = 2 kΩ

Γdmin
Γdmax

Order JH maxλ∈Λ J(FH(ω), H(λ, ω)) JL

0.8 0.9 12 0.4024 0.3977 0.3804
0.5 0.9 12 0.5117 0.4860 0.3963
0.3 0.9 12 0.5760 0.5356 0.4000
0.0 0.9 10 0.6701 0.6104 0.4012

−0.3 0.9 12 0.7658 0.6691 0.4010
0.5 0.8 6 0.3597 0.3493 0.3215
0.0 0.8 6 0.4333 0.4116 0.3216

−0.3 0.8 6 0.4981 0.4423 0.3216

and determine the other matrices in order to cope with the

parameter uncertainty in both matrices A and B, that is

E =

















0 0
0 0
0 0
1 0
0 1

1+Γg

1+Γc
0

















, C ′ = (1 + Γm)



























0 Γc

1+Γc
1

1+Γc

Γm

1+Γm

0
Γg

1+Γg

0 0
0 0
0 0
0 Z0

Z0+Zg

0 0



























(42)

Under the assumption that the load end voltage vc(k)−vc0(k)
is measured by a sensor with static gain κ = 10 and that it

is corrupted by an additive noise, we define

Cy =
[

κ 0 0 0 0 0
]

, Dy =
[

0 1
]

(43)

Finally, our goal is to estimate the stub end voltage vd(k)−
vd0(k), amplified by the same static gain, which yields the

output matrices

Cz =
[

0 κ 0 0 0 0
]

, Dz =
[

0 0
]

(44)

For several admissible values of Γdmin
and Γdmax

satisfy-

ing −1 < Γdmin
and Γdmax

< 1, we have collected in Table

II the order of the robust filter, the upper bound JH to the

H2 cost, the exact value of the guaranteed cost calculated

by gridding and the optimistic H2 cost JL. We want to

stress that for Γdmax
close to the maximum value 1 (meaning

that Zd → ∞) an apparent singularity in the upper bound

problem appears since it becomes ill conditioned. Moreover,

in this situation, the order of the robust filter equals twice the

order of plant as it can be verified for almost all cases with

Γdmax
= 0.9, meaning that no cancellation of poles and zeros

was possible. When Γdmax
is reduced to 0.8 we can notice

that the cancellations of 6 poles and zeros were performed on

FL(ω), resulting a robust filter FH(ω) of order equal to the

order of the transmission line model (33). The comparison

of JH , JL and the exact value of the guaranteed cost given

in Table II puts in evidence that the proposed robust filtering

design method performs well for this particular problem

derived from an actual practical application.

VII. CONCLUSIONS

In this paper a new approach to H2 robust filter design for

discrete LTI systems subject to linear fractional parameter

uncertainty representation has been proposed. It is based

on the determination of lower and upper bounds of the

equilibrium solution of a minimax problem. A robust filter

is constructed from the optimal solution of the problems

defined by both bounds. The most interesting characteristic

of the design method proposed is that these problems are

expressed in terms of linear matrix inequalities without

imposing the order of the filter to be equal to the order of the

plant. Moreover, it was possible to certify the performance

of the robust filter from the determination of the optimality

gap. An example borrowed from the literature and a practical

application involving a stub connected to a transmission line

with uncertain reflection coefficient have been considered for

illustration.

Some points deserve more attention in the future. First, the

determination of the robustness properties of the filter FL(ω)
associated to the lower bound since this could avoid the

computational effort needed to determine the filter associated

to the minimum upper bound. Second, the generalization of

the present results to cope with H∞ norm.
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