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e background, motion systems

e control for dummies

e advanced motion control challenges
 embedded dynamical systems
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Eindhoven University of Technology

¢ O scientific departments, 10 academic Bachelor
programmes, 19 Master programmes, 3000 employees,
220 professors, 6800 students, 200 postgraduate students,
450 PhD students

e located in the Eindhoven-Aachen-Leuven triangle

e ‘mechatronics’ high tech industry:
e Philips, ASML, FEI, Assembleon
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Mechanical Engineering Department

* O full prof., 60 senior research staff,
e 18 Post Docs, 105 PhD students,
e 700 BSc and MSc students
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Structure of Mechanical Engineering

Thermo Fluids Engineering
Computational and Experimental Mechanics
Dynamical Systems Design

2 ‘theme Mastertracks’:
« Automotive Engineering Science
e Micro and Nano Technology
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TU/e - W : Full Chairs in DSD Division

e Dynamics and Control:
Prof.Dr. Henk Nijmeijer
e Control Systems Technology:
Prof.Dr.Ir. Maarten Steinbuch
e Systems Engineering :
Prof.Dr.Ir. Koos Rooda
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from Industry

to Academia

(1999)
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In theory
there Is no difference between theory and practice

In practice there is
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simulation is like masturbation:
the more you do it
the more you think it is the real thing!
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bridging the gap

* education: merge classic & modern
e bring Iin real industrial systems
 confront PhDs with other disciplines

 learn from experimental experience
how to proceed with theory
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Control Systems Technology

e 1 full prof

o 2 part-time prof

e 7 associate and assistant prof
* 4 technical staff members

e 20 PhD students

* 40 MSc students/year

/department of mechanical engineering
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 Motion Systems

— Industrial applications (pick-and-place,
(bio)-robots)

— consumer applications (storage systems)

— hydraulic servo systems

o Automotive
— power trains (in particular CVT)

— (passive) car safety systems
— vehicle electrical power management

/department of mechanical engineering
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Automotive Safety Restraint Systems
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Mechanical Electronic / Electrical Pneumatic Hydraulic

Thermal Optical Acoustical Software
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Motion Systems
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Disturbance F

d

p——

Servo force ?
«— [ —| Mass
S
M
Q)
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Mechanical solution:

Force spring damper  F=—k-x—d-x

1 |k
Eilgenfrequenc =—|—
g q y f i
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Disturbance F d
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Servo analogon:

— %
F
sevo__| Mass
M
ﬁ
Servo force F =—k -x—k, %
_ 1 kp k,: servostiffness
Eigenfrequency fzz;; M k,: servodamping
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Example:

Disturbance F |

«— [ —| Mass
S
M
Q)

Slide: mass =5 kg
Required accuracy 10 um at all times
Disturbance (f.e. friction) = 3 N

1. Required servo stiffness?
2. Eigenfrequency?
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How to move to / follow a setpoint:

hor)gs ———X>
l_[J\NVL
N oo

Springdamper  F =k(h—x)+d(h—x)
Controller F =k, (x, —x)+k,(x, —X)
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controller

——O—| k,+k,

d

|:disturbance

dt

ey

process

Mass
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K,/k,-controller or PD-controller
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controller
X
L€ X
—>Q—> kp =9 ——| process >
kv — ‘? |:servo

. = (ew | ) & (o]
Trade off
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Setpoints: Xs =
e
——

OO

What should x, look like as a function of time, when moving the mass?

(first order, second order, third order,....?)
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Apply a force F (step profile):

F(t) = Mx(t)

U

X(t) iIs second order, when F constant

Second order profile requires following information:

- maximum acceleration
- maximum velocity
- travel distance

/department of mechanical engineering
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setpoint profile

Example
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Concluding remarks time domain tuning

A control system, consisting of only a single mass m and a
k,/k, controller (as depicted below), is always stable.
k, will act as a spring; k, will act as a damper

As a result of this: when a control system is unstable, it

cannot be a pure single mass + k/k, controller
(With positive parameters m, k and k)

X X
M
_j_
k. OO

7
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Frequency domain

Time domain:
Monday and Thursday at 22:10 g

Frequency domain:
twice a week

/department of mechanical engineering
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X
2
M £
» excitation force in N and displacement in m
0.2
weak spring M =5Kkg : ' ' ' '
(f= 2.5 Hz) | exgitation fo:rce (offset 0.1 8‘¢scaling le-4) i
0.15
F(t)=400sin2z76)  oxH{ AWV VA L
0.05¢} -
H(7Hz)| ~ 0.045/400=1le-4m/N
ZH(THz) = —180°
-0.05 ‘ ‘ ‘
i i respénse i \
L | s S e S
0.15 : : : : :
, , 70 0.5 1 1.5 2 2.5 :
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measurement mechanics stage
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amplitude in dB

2 3
frequency in Hz
phase in deg
200 ; : : —
0 i
200 S N N N I R
102 105
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Transfer function:

H(s) = x(s) 1
F(s)  Ms*+ds+k

F 1 X
Ms? +ds +k
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Bode plot of the PD-controller:

TU/e

kp =1500 N/m; kv =20 Ns/m

amplitude in dB
100 — T T
80 -
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60 l S N O == ‘ R S SR
100 . 101. o 10
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L
[

/department of mechanical engineering

45



TU/ C o C(s) >é+ > H(s)

] - FS—I—

Four important transfer functions

1. Open loop Ls) = Cls)H(s)
x, . C(s)H(s)
2. Closed loop I'(s)= X, (s)= 1+ C(s)H (s)
n _ €|
3. Sensitivity S(S)—XS (8)= 1+(s)H(s)

4. Proces Sensitivity H_(s)= i(S) = )
? F, 1+ C(s)H(s)

/department of mechanical engineering
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Filters

Integral action
Differential action
*Low-pass
*High-pass
*Band-pass

*Notch filter

/department of mechanical engineering
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Integral action :

X(t) > Y (1)
()

7, Integral time constant t, =1/k;

N
AN

w=27f

v

-90°
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Differential action

u , u
H=ks=—; s=jw;, —{=kw
E E
E —> ks — U4
_ _ u ks
“tamme” differentiator : —=
& T,5+1
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“lead” filter

u l+zs  l+7,s
T
e 141, {4 5d ¢
/4
v>1
+90°
OO

/department of mechanical engineering T, - 7,
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P+1+D

+90°
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2"d order filter

(t) - AL D Le @)
T - S S

2p

A
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General 2nd order filters
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General: o, 7w,

2
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+180°

OO
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TU / e “Notch”-filter :w,= w,

A

ampl.

-180°
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Loop shaping procedure for motion systems

1. stabilize the plant:
add lead/lag with zero = bandwidth/3 and pole = bandwidth*3,
adjust gain to get stability;
or add a pure PD with break point at the bandwidth

2. add low-pass filter:
choose poles = bandwidth*6
3. add notch if necessary,
or apply any other kind of first or second order filter and shape the loop
4. add integral action:
choose zero = bandwidth/5
5. increase bandwidth:

Increase gain and zero/poles of integral action, lead/lag and
other filters
during steps 2-5: check all relevant transfer functions,
and relate to disturbance spectrum
/department of mechanical engineering
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mechanics 4th order system

100 —
)
0,
[1}]
o)
2
a
=
(1]
_50 B .
10° 10’ 10
frequency [Hz]
100+ ;
D :
Q i
T, :
® OF :
1] :
()] i
o Z
- :
< AOD e mommib oo dessnsheradimedion bogsius R R a
10° 10" 10°

frequency [Hz]



controller PD

'10 T ! ‘I
$.-20 g
[0)]
©
=
g_30 .
(0]
_40 . \ I : X N L : X M
10° 10’ 10°
frequency [Hz]
100 B T i I I I I IS S <
>
[0)]
S,
) 0
w
]
==
(o}
I 0] | TCRPOUAPPRRIN PRSP SN RN . TN RN TR TR TR R R -
10 10' 10°

frequency [Hz]



N
o

open loop 4th order system
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Nyquist plot 4th order system
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closed- loop 4th order system
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proces sensitivity closed- loop vs mechanics(...)
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Nyquist plot 4th order system
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closed- loop 4th order system
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proces sensitivity closed- loop vs mechanics
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controller PD, PID, PID+notch
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Nyquist plot 4th order system




10

-10

'
N
o

amplitude [dB]

]
w
o

-40

-50

closed- loop 4th order system

-60

I G |

10

10’
frequency [Hz]



amplitude [dB]

sensitivity 4th order system

10

I G |

-25
10

10’
frequency [Hz]

10



proces sensitivity closed- loop vs mechanics
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Implementation issues
1. sampling = delay: linear phase lag

for example: sampling at 4 kHz gives phase lag
due to Zero-Order-Hold of:

180° @ 4 kHz
18° @ 400 Hz
Qo @ 200 Hz

2. Delay due to calculations
3. Quantization (sensors, digital representation)

/department of mechanical engineering
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Feedforward design
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Feedforward based on inverse model

+
Xs—-I:Q—» K, +K,s __I._O_. 12

& =

/department of mechanical engineering



Example: m=5 [kg], b=1 [Ns/m],

TU/G 2nd degree setpoint

XS [m]

0.5 /
./

15

vs [ms-1]
~)
/

4
X /
n 2 7
£ 4
%)) -2
®

4

0 0.2 04 0.6 0.8 1 1.2
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x 10°

Tl |/e Example: tracking error, no feedforward

15 /H—-————\- ‘

[ T

1 / \ viscous damping effect

7

[m]

|

error

|

]

-1.5 —)
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TU/ Example: tracking error, with feedforward
C

x 10

15 ':»"u-. .................. .:‘ K fv= 0.9, K — 0

us g K =09, K =45

[m]

error

-0.5

-15

lllllllllllllllllllllllll
[l

-2
0 0.2 0.4 0.6 0.8 1 12 1.4 1.6
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TU/G feedforward structure

sign( X, )
K fc

X, +

i K fa +
X, +

> K fv +
X, + +
= — C(s) AJAD—- H(s)
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TU/G 3rd degree setpoint trajectory

1

xs [m]
\
\

vs [ms-1]

0.5 / \

as [ms-2]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
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Parasitic Dynamics
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amplitude in dB
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Three Types of Dynamic Effects

- Actuator flexibility
- Guidance flexibility

- Limited mass and stiffness of frame

/department of mechanical engineering
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1. Actuator flexibility

A 4

K
F VWM
s~ | Motor Sensor
_j_
O_O 9 0O O
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amplitude in dB
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Bodediagram of the 1 axis at 11 different ¥-positions
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2. Guidance flexibility

<—F—> )

O EE

(o
M
Y=

Q0

7
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TU / e 3. Limited mass and stiffness of frame

X
F
S
_K\M e Motor
]_
QO
Frame

O @ N
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Motion Control Properties

experimentation is ‘cheap’

Disturbance Design Cycle: 7 min FRF measurement,
model, loopshape, implementation

plant decoupling, I.e. SISO

feedforward: low-order model-based

feedback: loopshaping

key limitation: bode gain/phase - sensitivity integral

/department of mechanical engineering
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sensitivity 4th order system

amplitude [dB]

o S S S N AR S
10° 10’
frequency [Hz]
/department of mechanical engineering
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Tl |/e Gunter Stein’s Bode Lecture, CDC 1989
IEEE Control Systems Magazine, 23 (2003), pp 12- 25

Serious Design 5.0
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Motion Control Challenge:

how to cope with Bode sensitivity limitation?
Ilog‘S(jco)‘dco =0
0

/department of mechanical engineering
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directions of motion control research

 MIMO loopshaping

e nonlinear control of linear systems (reset...)
 disturbance-based modelling and control

e data-driven control

/department of mechanical engineering
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directions of motion control research

 MIMO loopshaping

e nonlinear control of linear systems (reset...)
 disturbance-based modelling and control

e data-driven control
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MIMO integral constraints...

Sensitivity dirt
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directions of motion control research

 MIMO loopshaping

e nonlinear control of linear systems (reset...)
 disturbance-based modelling and control

e data-driven control

/department of mechanical engineering
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Problem formulation

Do there exist nonlinear feedback controllers
that give better ‘performance’ for linear motion
systems than linear solutions?

/department of mechanical engineering
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Approach

e Performance measures?

* Plant 1s linear, but

 disturbances and specifications ‘change’
* Use LPV for synthesis?

 How about non-smooth (reset) filters

/department of mechanical engineering
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Bode Gain/Phase relation

Slope =n
means

phase = n*90 degrees

/department of mechanical engineering
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SPAN- filter

rectifier low-pass

m e od
sign lead

be creative with control!

/department of mechanical engineering

110



- - =
qp] opnymBely  [seeadop] eseyq
-

/de

111



/department of mechanical engineering

112



fev it g R e iy D Terh i e e, SlEaie Rk el el m et e VOO ke A el MW RN REAME el SR il d Vo anlecs  dimle

Stepresponse

.....................................................

O | | ! | | | | | |
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 04 0.45 0.5

Time

/d



TU/e

directions of motion control research

 MIMO loopshaping

e nonlinear control of linear systems (reset...)
 disturbance-based modelling and control

e data-driven control

/department of mechanical engineering
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disturbance-based modelling and control
 disc errors vs shocks optical storage
e stochastic vs deterministic disturbances

e repetitive vs a-periodic setpoints or disturbances

Internal model principle....

/department of mechanical engineering
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Iterative Learning Control (ILC)
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directions of motion control research

 MIMO loopshaping

e nonlinear control of linear systems (reset...)
 disturbance-based modelling and control

e data-driven control

/department of mechanical engineering
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Data-driven control

 Examples:
— data-based LQG control
— Iterative feedback tuning
— virtual reference feedback tuning
— unfalsified control
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Problem statement

 Design a SISO LTI controller C for LTI plant P

—

ri_?e} C

P

Y

-

« Control objective: realize the desired S, and T,

 |deal controller C,:

1

Sy = T, = .
1+ PC, 1+ PC,

/department of mechanical engineering
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Data-based controller design

The controller class: {C(z,0)} = {C,(z)B" (2)8}.

C,(2) Is directly prescribed by the designer: notches,
Integrators, etc.

Basis functions: B(2)=[5,(2) (2)... B,(2)] .

Tuning parameters: 0=[6,6,...0 ]".

/department of mechanical engineering

125



TU/e

* Constrainton C: 7 (z)=C,(2)S,(z)P(z)

 Model-based cost function:
Jvz(®) =[(T,(2)~C(2,0)S, () P) W (2);

* Processing the measurements:

T, (2)u(r) = C(2,0)S, (2) P(2)u(t) = T, (2)u(t) = C(z,0)S,(2)y(?)

e Data-based cost function:

I (8) = % %1 LT, (2u()—C(z,0)S, (2)y(0)]

/department of mechanical engineering
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Unfalsified control

Given a set of controllers, implement one, use
the 1/O data, and check which part of the set
IS not feasible, then change the set and
iterate

Safanov, Tsao 1997
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Explore Motion Control Properties

experimentation is ‘cheap’

Disturbance Design Cycle: 7 min FRF measurement,
model, loopshape, implementation Data based

plant decoupling, i.e. SISO MIMO disturbances
feedforward: low-order model-based Learning control
feedback: loopshaping nonlinear control

key limitation: bode gain/phase - sensitivity integral
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