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Contents
• background, motion systems
• control for dummies
• advanced motion control challenges
• embedded dynamical systems 
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Eindhoven University of Technology

• 9 scientific departments, 10 academic Bachelor 
programmes, 19 Master programmes, 3000 employees, 
220 professors, 6800 students, 200 postgraduate students, 
450 PhD students
• located in the Eindhoven-Aachen-Leuven triangle
• ‘mechatronics’ high tech industry:
• Philips, ASML, FEI, Assembleon
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Mechanical Engineering Department

• 9 full prof., 60 senior research staff, 
• 18 Post Docs, 105 PhD students, 
• 700 BSc and MSc students
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Structure of Mechanical Engineering

Thermo Fluids Engineering
Computational and Experimental Mechanics
Dynamical Systems Design

2 ‘theme Mastertracks’:
• Automotive Engineering Science
• Micro and Nano Technology
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Mechanical Engineering Department

Dynamical
Systems
Design
(DSD)

Thermo Fluids
Engineering

(TFE)

Computational & 
Experimental

Mechanics
(CEM)

Automotive Engineering Science (2001)

(Sub)-Micron Technology (2003)
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TU/e - W : Full Chairs in DSD Division

• Dynamics and Control:
Prof.Dr. Henk Nijmeijer

• Control Systems Technology:
Prof.Dr.Ir. Maarten Steinbuch

• Systems Engineering :
Prof.Dr.Ir. Koos Rooda



8

TU/e

/department of mechanical engineering

from Industry    …

… to Academia

(1999)
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TU Eindhoven

Philips
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Isles of AcademiaIsles of Academia
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…

in theory 
there is no difference between theory and practice

in practice there is



12

TU/e

/department of mechanical engineering

…2

simulation is like masturbation:
the more you do it 
the more you think it is the real thing!
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bridging the gap

• education: merge classic & modern 
• bring in real industrial systems
• confront PhDs with other disciplines
• learn from experimental experience 

how to proceed with theory



14

TU/e

/department of mechanical engineering

Control Systems Technology

• 1 full prof
• 2 part-time prof
• 7 associate and assistant prof
• 4 technical staff members
• 20 PhD students
• 40 MSc students/year
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• Motion Systems
– industrial applications (pick-and-place, 

(bio)-robots)
– consumer applications (storage systems)
– hydraulic servo systems

• Automotive
– power trains (in particular CVT)
– (passive) car safety systems
– vehicle electrical power management
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DaVinci surgery robot © Intuitive Surgery Inc.
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Automotive Safety Restraint Systems



20

TU/e

/department of mechanical engineering

Zero-Inertia
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Continously Variable Transmission
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1/1,000 mm

Source: intel, ICE
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Stepper Exposure Method

Reticle

Lens

Reticle

Wafer

Design

Source: ASML
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Illumination

Aberrations Scatter

Source
optimization

Dose
optimization Mask optimization software
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Mechanical Electronic / Electrical Pneumatic Hydraulic Chemical

AcousticalThermal Optical Software
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Motion Control for
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Motion Systems

m F

x
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x

Servo force ?
Mass 
M

Disturbance F  d

F
s
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Mechanical solution:

M
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Force spring damper
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x
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M
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F
servo

damping servo:
stiffness servo:

v

p

k
k

Eigenfrequency

Servo force

Servo analogon:
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x

Mass 
M

Disturbance F  d

F
s

Example:

Slide: mass = 5 kg
Required accuracy 10 µm at all times
Disturbance (f.e. friction) = 3 N

1. Required servo stiffness?
2. Eigenfrequency?
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h  or xs
x

  
)()(:damper-Spring

     

xhdxhkF ��−+−=

How to move  to / follow a setpoint:

)()(  :Controller

     

xxkxxkF svsps �� −+−=
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dt
dkk vp +
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Fservo

process
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xFxs
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Kp/kv-controller or PD-controller
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xs
xSetpoints:

What should xs look like as a function of time, when moving the mass?

(first order, second order, third order,….?)
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x

F M

Apply a force F (step profile):

⇓

=

         

)()( txMtF ��

x(t) is second order, when F constant

Second order profile requires following information:

- maximum acceleration
- maximum velocity
- travel distance
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Example 

2
max

max

sec/36.1500
sec/6320

3.62

radeAcc
radVel

radPos
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≈=
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π
π
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Concluding remarks time domain tuning

xs
x

M
kv

kp

A control system, consisting of only a single mass m and a 
kp/kv controller (as depicted below), is always stable.
kp will act as a spring; kv will act as a damper

As a result of this: when a control system is unstable, it 
cannot be a pure single mass + kp/kv controller
(With positive parameters m, kp and kv)
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Time domain: 
Monday and Thursday at 22:10

Frequency domain:
twice a week 

Frequency domain
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measurement mechanics stage
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Transfer function:
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Bode plot of the PD-controller:
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Four important transfer functions

)()()( sHsCsL =1. Open loop
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Mimo

Filters

•Integral action
•Differential action
•Low-pass
•High-pass
•Band-pass
•Notch filter

PeeDee
PeeEye
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Integral action :

X(t) Y(t)
siτ

1

τI integral time constant τI =1/ki
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ω=2πf0°
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“lead” filter
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2nd order filter
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General 2nd order filters
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“Notch”-filter :ω1= ω2

-180°

ampl.

2

1

β
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Loop shaping procedure for motion systems
1. stabilize the plant:

add lead/lag with zero = bandwidth/3 and pole = bandwidth*3, 
adjust gain to get stability; 
or add a pure PD with break point at the bandwidth

2. add low-pass filter:
choose poles = bandwidth*6

3. add notch if necessary, 
or apply any other kind of first or second order filter and shape the loop

4. add integral action:
choose zero = bandwidth/5

5. increase bandwidth:
increase gain and zero/poles of integral action, lead/lag and 
other filters 

during steps 2-5: check all relevant transfer functions, 
and relate to disturbance spectrum
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Implementation issues

1. sampling = delay: linear phase lag

for example: sampling at 4 kHz gives phase lag 
due to Zero-Order-Hold of:

180º @ 4 kHz
18º @ 400 Hz
9º @ 200 Hz

2. Delay due to calculations
3. Quantization (sensors, digital representation)



80

TU/e

/department of mechanical engineering

Feedforward design
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Feedforward based on inverse model

sx
2ms

1sKK vp +

2ms

x
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Example: m=5 [kg], b=1 [Ns/m], 

2nd degree setpoint

0.5

1

xs
[m
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1.5
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Example: tracking error, no feedforward
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viscous damping effect
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Example: tracking error, with feedforward
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feedforward structure
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fcK
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3rd degree setpoint trajectory
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Parasitic Dynamics



88

TU/e

/department of mechanical engineering



89

TU/e

/department of mechanical engineering

Three Types of Dynamic Effects

- Actuator flexibility

- Guidance flexibility

- Limited mass and stiffness of frame



90

TU/e

/department of mechanical engineering

1. Actuator flexibility

k

x

d

SensorMotor
F
s
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2. Guidance flexibility

k

x

F
s

M, 
J
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3. Limited mass and stiffness of frame

x

Fs
Motor

Frame
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Motion Control Properties

• experimentation is ‘cheap’
Disturbance Design Cycle: 7 min FRF measurement, 

model, loopshape, implementation
• plant decoupling, i.e. SISO
• feedforward: low-order model-based
• feedback: loopshaping
• key limitation: bode gain/phase - sensitivity integral
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Gunter Stein’s Bode Lecture, CDC 1989

IEEE Control Systems Magazine, 23 (2003), pp 12- 25
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Motion Control Challenge:

how to cope with Bode sensitivity limitation?

0)(log
0

=∫
∞

ωω djS
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directions of motion control research

• MIMO loopshaping
• nonlinear control of linear systems (reset…) 
• disturbance-based modelling and control
• data-driven control
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directions of motion control research

• MIMO loopshaping
• nonlinear control of linear systems (reset…) 
• disturbance-based modelling and control
• data-driven control
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Sensitivity dirt

‘Loop’ 1

‘Loop’ 2

… ‘Loop’ n

MIMO integral constraints…
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directions of motion control research

• MIMO loopshaping
• nonlinear control of linear systems (reset…)
• disturbance-based modelling and control
• data-driven control
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Problem formulation

• Do there exist nonlinear feedback controllers 
that give better ‘performance’ for linear motion
systems than linear solutions?
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Approach

• Performance measures?
• Plant is linear, but
• disturbances and specifications ‘change’
• Use LPV for synthesis?
• How about non-smooth (reset) filters
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Bode Gain/Phase relation

Slope = n 
means 

phase = n*90 degrees
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SPAN- filter

rectifier low-pass

X

sign lead

be creative with control!
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directions of motion control research

• MIMO loopshaping
• nonlinear control of linear systems (reset…) 
• disturbance-based modelling and control
• data-driven control
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disturbance-based modelling and control

• disc errors vs shocks optical storage 
• stochastic vs deterministic disturbances
• repetitive vs a-periodic setpoints or disturbances

Internal model principle….
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Iterative Learning Control (ILC)

( ) 11 <− PSLQkk ee <+1
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directions of motion control research

• MIMO loopshaping
• nonlinear control of linear systems (reset…) 
• disturbance-based modelling and control
• data-driven control
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Machine-in-the-loop design
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Data-driven control
• Examples:

– data-based LQG control
– iterative feedback tuning
– virtual reference feedback tuning
– unfalsified control
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Problem statement

• Design a SISO LTI controller C for LTI plant P

r e u y
PC+

-

• Control objective: realize the desired So and To

,
1

1
o

o PC
S

+
= .

1 o

o
o PC

PCT
+

=

• Ideal controller Co:
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Data-based controller design 

• The controller class: }.)()({)},({ p θβθ zzCzC T=

• Cp(z) is directly prescribed by the designer: notches, 

integrators, etc.
• Basis functions: .)]()()([)( 10

T
n zβzβzβz …=β

• Tuning parameters: .]θθθ[ 10
T

n…=θ
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)()()()( ooo zPzSzCzT =• Constraint on Co:

• Model-based cost function:

( ) 2
2ooMB )()()(),()()( zWzPzSzCzTJ θθ −=

• Processing the measurements:

)()(),()()()()()(),()()( oooo tyzSzCtuzTtuzPzSzCtuzT θθ =⇒=

• Data-based cost function:

( ) 2

1
ooDB ])()(),()()()([1)( ∑ −=

=

N

t

N tyzSzCtuzTzL
N

J θθ
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Unfalsified control

Given a set of controllers, implement one, use 
the I/O data, and check which part of the set 
is not feasible, then change the set and 
iterate

Safanov, Tsao 1997
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Explore Motion Control Properties

• experimentation is ‘cheap’
Disturbance Design Cycle: 7 min FRF measurement, 

model, loopshape, implementation Data based
• plant decoupling, i.e. SISO MIMO disturbances
• feedforward: low-order model-based Learning control
• feedback: loopshaping nonlinear control
• key limitation: bode gain/phase - sensitivity integral



139

TU/e

/department of mechanical engineering

The EndThe End
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