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Introduction

What do DC drives, cranes, motion control systems or
chemical reactors hold in common ?

Overheéad Crane

=

" Chemical

e, S N i =
Motion Control Stage Reactor
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Introduction

Ld—le—RI—Ka)
dt

do
JEZKI —KUC()—CI-

Control variableU
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Introduction

DC Drive

Property of the outpwy = @ (C; known)
w=Yy
1 .
| = K Jy+ Kyy+Cp)

dl
U=L— +RI+Ky

dt
dl K2+ RK RJ+ LK JL
L—=U-RI-—Ko _ v Ve Yy
((jjt K Ly+ ItV
w .
JEZKI—KUQ)—CI‘ +Rcr+RCr

Control variableU
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Introduction

Motion Control Stage

System (1 d.o.f. case):

e F<=l§ma

§ :
Passive H
damper I
Q
X 'Xp
MX = F
MéXB =—F - kXB —I'Xg

Control variable:F
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Introduction

Motion Control Stage

System (1 d.o.f. case):

Property of the output
e F<=l§ma

° Passive ‘}..:1
damper !
P }q
X 'Xp
Mx=F . _m(Meyw  "vo
MgXg = —F —kxg —rXg = kY kY y
Control variable:F

Jean LEVINE
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Introduction

Overhead Crane
System (2 d.o.f. case):

M

o

,,,,,,,,,,,,,,,,,,,,,,,,,,

mx = —T siné
mz = —T cosf + mg

MX = F + T sing
J

“R=—1t+Tp
o

X = X 4+ Rsiné
z = Rcoso

Control variables{(F, 1)
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Overhead Crane
System (2 d.o.f. case):

o M

,,,,,,,,,,,,,,,,,,,,,,,,,,

mX = —T sind
m2..= —T cosh + mg
MX = F + T sing

J ..
—R=—1t+4+Tp
o

X = X 4+ Rsiné
z = Rcoso

Control variables{(F, 1)

Introduction

Property of the output y = (X, 2)

X=X—..XZ
Z—9g

R=% /)'(2+(2_g)2

%
0 = arctan( - )
Z—9

T=my/X?+ (2—9)?
<7

dZ
:Mdtz(X_T)erX
J d? z
4 [52 T 5 2
¢ ,odt2<2—g X*+(@-9)

+mMoy/X2 + (2 — g)?
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Introduction

Chemical Reactor

System (Aris & Amundson, 1958):

xp Tg

— ] r
g_z Gl x T

X=DXg —X)—ri,T)
T=DTe-T)+arx,T)+Q
Control variable:Q

4
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Introduction

Chemical Reactor

System (Aris & Amundson, 1958):

xr I
Property of the output y = x
T = T(x, X) solution to
— , rex, T)=D(Xg — X) — X
g_z Gl x T

Q= z—T(X, X, X) = D(Tg = T(X, X))
X=D(Xg —Xx)—r(x,T) —a (D(Xp —Xx) = X)
T=DTe—T)+ar(x,T)+Q

Control variable:Q

Jean LEVINE Flatness Based Control




Introduction

Summary

In all these examples
there exists an outpytsuch that
e y has the same dimension as the control vector;

e all the system variables can be expressed in functionasfd a
finite number of successive derivatives.

y is called &flat output and the corresponding system is said to be
differentially flat .
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Introduction

Generate and follow fast trajectories with complex objectives, using
poor actuators and sensors.

! 3-_*'. N[

e

bumper
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Flat Systems
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Flat Systems

Recalls on Differentially Flat Systems

©M. Fliess, J.L., P. Martin, P. Rouchon 1991.

Definition
The nonlinear system = f(x, u), with X = (X4, ..., Xy): state
andu = (uyg, ..., uy): control m < n.
is (differentially) flatif and only if there existy = (y1, ..., Ym) such
that:

e y and its successive derivativgsy, ..., are independent,

e y=h(x,u,u,...,u") (generalized output),

e Converselyx andu can be expressed as:
X :(P(y, y,...,y(a)), u= W(y’ y’.."y(()l-Fl))
with ¢ = f(p, ¥).

The vectory is called &flat output.
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Flat Systems

Main advantages of Flatness
@ Direct open-loop trajectory computatiomithout integration nor
optimization.
@ Local stabilization of any reference trajectarsing the

equivalence between the system trajectories and those of
y(ﬂl"rl) = 0.

“Flatness-Based Control” = Trajectory Planning
+ Trajectory Tracking.

Alternative approach t&redictive Control
(see e.g. Fliess, Marquez 2001).
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Flat Systems

Consequence on motion planning

To every curvd — y(t) enough
differentiable, there corresponds a
trajectory

x(@t) \
t— ( u(t) ) =
( P(y@), y(), ..., y@) )
Yy, y@), ..., y*r)

that identically satisfies the system
equations.

> x@)u@)

(‘Ps‘l’)fLi@-Bﬁddund

Jean LEVINE
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Flat Systems

@ Find the flat output initial and final conditions:

I given \ find |
(ti, X(t), u(t)) | (yt).....y""V))
(te, X(te), u(te)) | (yte), ..., y D (te))

@ Build a curvet — y(t) fort e [, t¢] by interpolation, possibly
satisfying further constraints

© Deduce the corresponding trajectony> (x(t), u(t)).

Rest-to-rest trajectories:

I given | thus |
X(t)=0,ut)=0 | yt)=...=y" " It)=0
X(t)) =0,0(ty) =0 | y(tr) =... =y I(ty) =0
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Flat Systems

Consequence on trajectory tracking

Assume thay, ..., y® are measured or suitably estimated.
There exists arendogeneous dynamic feedback
u=ua(x,zv), zZ=p(X,z0v)
such that the closed-loop systemdgfeomorphic to
y(oz+l) = 0.

Given a referencei— (Yret (t), vrer (1)) With vrer (t) = Y& (1), to
stabilize the tracking error ¢ = y — Y,e We Set:

8(a+1) =V — VUref = — Z?:O kiE(i)
with the gaing;,i =0, ..., «, such that all the roots of the
polynomials®*! 4 k,s* + ... + k1S + ko have negative real part.
Thus|e(t)|| < Ce 2t and, by continuity, locally,

dist(x(t), Xref (t)) — O.
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Flat Systems

Some usual critics

Flatnesoften understood asedback linearizatian
questionable novelty

not robust (model dependent)

not physical (compensation of open-loop stable dynamics)
inapplicable with constraints

no systematic way to compute flat outputs

and soon...
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Flat Systems

Some usual critics

Flatnesoften understood asedback linearizatian
questionable novelty

not robust (model dependent)

not physical (compensation of open-loop stable dynamics)
inapplicable with constraints

no systematic way to compute flat outputs

and soon...

Are they right?
No!!l See next slide. ..
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Flat Systems

T
axe de rotation —_———

_ \ ' pendule
1

Benchmark : N
‘I‘ amortisseur indicateur

de position
verticale

e Displacements of an undamped
pendulum

e at high speed

e without oscillation at the end
e without overshoot

e without position sensor

Thanks to the help of Micro-Coriite
(subsidiary of Newport Corporation.).
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Flat Systems

Conclusions :

e nofeedback linearizatio(only the motor position is measured

novelty. improvement w.r.t. input filtering
robustnessdepends only on the pendulum period
physical aspectsio dynamical compensation (open loop)
constraintsno problem.

flat output computatian

e inthe linear casesee J.L. and D.V. Nguyen, Systems & Contro
Letters, 2003,
e in the general casel.L., Proc. NOLCOS 2004, Stuttgart.
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Comparisons DC Motor
Linear Motor

DC Motor Start-Up

From rest at timd;.
To stabilized speed¢ at timet;.
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Comparisons DC Motor

Linear Motor

System (recall):

L—=U-RI-Kow
dt
dw

T =Kl - Kyo — C;
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Comparisons DC Motor

Linear Motor

Flat output:y = w (C; known)
w=Yy
1 .
| = R(Jy-l— Kyy+Cr)

System (recall):

@ _U_RI- dl

Lar =Y —RI-Ke U=Lg +RI+Ky

d

32 — Kl - Kyw— G K24+ RK, RJ+LK,. JL._

il > y+ y+ ==V
. ) K K
+RCr+RCr
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Comparisons DC Motor
Linear Motor

DC Motor Start-Up

Step Reference Tracking

Speed step reference:

. . K2+ RK,
o' () = wiHy4 (1), U™ = g @ Hy 10 (1)

Oifte[t,t+e¢[
1ift et +e te]

U=U"-Kp(—0*) — Kpi — K [;(@(r) — 0*(r))dr

dl
U] < Umax, ‘a

with Hy 40 (t) = {

<4, [ = Imax

Jean LEVINE Flatness Based Control



Comparisons DC Motor
Linear Motor

In every simulation:
o wi = 30rd/s, duratiom =t; —t; = 0.1s.
e Initial errorw(tj) = 0.087 rd/s & 5°/s),C;, = 0.5 Nm.
@ Unax= 25V andlyax = 10 A.

o Kp =0.056,K, =7.45etKp = 10°°
(time constants: 1€, 6.6.10~2 and 410~3s).

Variation ofé§ (current rate limitation):
@ 100 A/s
@ 95A/s
© 500 Als.

v
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§ = 100 A/s.

Comparisons

DC Motor
Linear Motor

Flatness
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§ =95 Als.

motor current in A angular velocity in rd/s

voltage in V

Comparisons DC Motor

Linear Motor

T
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Flatness




Comparisons DC Motor

Linear Motor

§ = 500 A/s.

2 40
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Comparisons DC Motor
Linear Motor

DC Motor Start-Up

Flatness-Based Reference Tracking

Speed and voltage reference trajectories:

oo (22 (202

K?+ RK RJ+ LK

U* = Uw** Ud)** O

K K K

U =U*"— Kp(w— ™) — Kpo — K| [{ (0(1) — o™ (1))dz

Same gainKp, K, andKp, same constraints, same initial errors.

Jean LEVINE Flatness Based Control



Comparisons DC Motor

Linear Motor

3 3of
£
>
2 20+ B
8
]
2
5 10F B
S
3
§ o= | | I . . . . I |
0 0.05 0.1 0.15 02 025 03 0.35 04 045 05
tin seconds
03 T T T
< T
£ o02f / \ B
£
5
SRR / -
3
s/
3 of
€
01 I | I | I | I | I
0 0.05 0.1 0.15 02 0.25 03 0.35 0.4 0.45 05
tin seconds
T
3l .
>
&
o 21 7
3
g
S 1r q
[ ; ; ; L L L . . ; B
0 0.05 0.1 0.15 02 0.25 0.3 0.35 0.4 0.45 05
tin seconds

Final angular speed reached in 0.1 s without overshoot, with a
precision of~ 0.1 mm/s for aspeed current rate limitation 50 times
smaller(10A/s).

Consequencesenergy savings, increased life duration.
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Comparisons DC Motor

Linear Motor

Linear Motor with Auxiliary Masses
Single Mass Case

MX=F —-k(x—2) —r(x—2)
MzZ=K(X—2)+rX—2)

Aims: " CEEEY = FAY
. L. linearimoto

Rest-to-rest fast and high precision |EE2 - = - -

displacements.

Measurements:

e X andx measured, ! ;
@ z not measured. In collaboration with Micro-Confile.
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Comparisons DC Motor
Linear Motor

Diplacement without taking into account the auxiliary mass:
MX=F + p (p:unknown disturbance)

Rest-to-rest trajectoryp(= 0):

t 4
Xref (1) = Xo + (X1 — Xo) (;)

(- 5) m(5) (7))

., X1 — Xo
ref() ref() ( T2 T

(eld)ol0) (1))

Jean LEVINE Flatness Based Control




Comparisons DC Motor
Linear Motor

PID controller:

F = Fer — Kp (X - X{ef) —kp (X - Xref)
—ki [y (X(7) = Xret (1)) dT

motor reference trajectory (m) auxiliary mass displacement (m) motor reference trajectory (m) auxiliary mass displacement (m)
0.1 1 01 0.
0.09)
0.08) 01 0.08 0151
0.07] -
0.08
0.06] 0.06
0.05| 0.06 (8]
.04 0.04
0.03) 0.04
0.05|
0.02) 002 0.02
001
0 05 1 15 0 05 1 15 0 05 1 15 0 05 1 15
4" motor-reference deviation (m) force (N) 1 motor-reference deviation (m) force (N)
1 1 1
1
0 10
1 50
§ 5
4
2| 0] 0] of B T N e |
0
2 5
5 1 5
10
6
8

15 5y 05 1 15 N 05 1 15 he) 05 1 15
DurationT = 0, 5s (left) andT = 0, 25s (right),
error of 20% ork andr.
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Comparisons DC Motor
Linear Motor

Taking into account the auxiliary mass

MX=F —k(x—2) —r(x—2
MZ=K(X—2)+rXx—2)

Flat output (J.L. and D.V. Nguyen, S&CL, 2003) :

. . r.
x:y+Ey+Fy, z_y+Ey

F=M+m(y+-y®+

y(4)
k (M + m)k
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Comparisons DC Motor

Linear Motor

Trajectory planning:

t 5
Yref (t) = Xo + (X1 — Xo) (?)
t t\2
x | 126— 420 — | + 540( —
T T
t\3 t\*
—315( = 70| = .
(T) " (T))
PID controller:

F = Fer —Kkp (X - X{ef) —kp (X - Xref)
—ki [y (X(7) = Xrer (1)) dT

Jean LEVINE Flatness Based Control



Comparisons DC Motor

Linear Motor

motor displacement (b) and flat output (g) (m) auxiliary mass displacement (m) motor displacement (b) and flat output (g) (m) auxiliary mass displacement (m)
0. 0. 0.
0.15) 0.15 0.15 0.15)
0.1 04 04 01
0.05 0.05 0.05 0.05
0 05 1 15 0 05 1 15 0 05 1 15 0 05 1 15
10 11 motor-reference deviation (m) force (N) 1 0—10 motor-reference deviation (m) force (N)
10 4 100
4 5 2 50
2)
0 0 0
0
P 5 2 5
0 05 1 15 ' 05 1 15 R 05 1 50 05 1 15

DurationT = 0, 5s (left) andT = 0, 25s (right),
error of 20% ork andr.
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Comparisons DC Motor
Linear Motor
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Comparisons DC Motor
Linear Motor

Linear Motor with Auxiliary Masses
The Case of Two Masses

MX=F —-k(xX—2) —r(x—2
—kKx—-2)—-r'(x-72)

mz=k(X—2)+r(X—2)

Mz =Kx—-2)+r'(x—72)

In collaboration with Micro-Confle.
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Comparisons DC Motor
Linear Motor

Flatness:

, rory. m e’ ooomr’oo
2=yt (it )V et ) Y Y

k ' kK Kk
FMy+M(-+-)y® 4 ml\7|’+l\7lm/+l\7li/ y@
- k K k k' kk'
mr’ - -rm’ Mmm
M = M— 5 (6)
+(kk’ + kk’)y T ke Y

withM = (M +m+m),M =M +mandM’ =M +mn.
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Comparisons DC Motor

Linear Motor

Rest-to-rest trajectory:

N
y(t) = Xo + (X1 — Xo) <?>

t t\?2
1716— 9009( — ) + 20020 —
X( (T)+ <T>
t\3 t\* t\° t\®
—24024( — ) 16380( =) —6006(—) +924(—) |.
T T T T

x andF deduced fromy by the previous formulas.

Jean LEVINE Flatness Based Control



Comparisons DC Motor

Linear Motor

motor displacement (m) -9 motor-reference deviation (m)

0.2 ,x 10

0

0 05 1 15 [ 05 1 15
1st auxiliary mass displacement (m) 2nd auxiliary mass displacement (m)

0.2 0.2
0.1 0.1

GO 0.5 1 1.5 GO 0.5 1 1.5

force (N)

100

ONW
100

0.5 1 15

Without taking into account the auxiliary masses
(same PID controller as in the single mass case)
durationT = 0, 25s, error of 20% ok andr
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Comparisons DC Motor

Linear Motor

motor displacement (b), flat toutput (v) -
-10 motor-reference deviation (m)

and motor reference (r) (m
02 () (m) 5X10
0.1 OM/WW
0 5
0 0.5 1 1.5 0 0.5 1 1.5
1st auxiliary mass displacement (b) 2nd auxiliary mass displacement (b)
0.2 and reference (v) (m) 02 and reference (v) (m)
0.1 / 0.1 /
GO 0.5 1 1.5 GO 0.5 1 1.5
force (N)
200
0
20 0 0.5 1 1.5

Taking into account the auxiliary masses
(same PID controller with rest-to-rest reference trajectory)
durationT = 0, 25s, error of 20% ok andr
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Comparisons DC Motor
Linear Motor
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Positionning Systems
Oscillating systems Crane

Contents

© Flatness-Based Control of Oscillating Systems
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Positionning Systems
Oscillating systems Crane

Flatness-based control of oscillating systems

High-precision positionning system

System (recall):

o F<=-ig'ﬂ

Ground

Passive
damper

MxX = F
M/BXB =-—F - kXB —I'Xg

Control variable:F

Jean LEVINE Flatness Based Control



Positionning Systems

Oscillating systems Crane

Flatness-based control of oscillating systems

High-precision positionning system

System (recall):

" F<=I-3¥s

Flat output

Ground

3

Passive
damper

MX = F

Mg w T o
M/BXBz—F—kXB—rXB F:M(Ty()+_y()+y
Control variable:F

Jean LEVINE
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Oscillating systems

Positionning Systems

Crane

Rest-to-rest trajectories
Initial and final conditions:

[ I initial time to \ final timet; |

X(to) = Xo X(11) = X1

stage X(tg) =0, X(t1) =0,
F(to)) =0 F(t1) =0

base Xg(to) = Xg(tp) =0 Xg(t1) = Xg(t1) =0
y(to) = Xo y(t1) = X1

flat output y(to) = Y(to) =0 y(t1) = y(t1) =0
y@o) =y?Pto) =0 | y¥t) =yPt) =0

10 conditions=—> 9th degree polynomial:
y(t) = Yo+ (Y1 — Yo) T° (126 — 420r + 540r* — 315¢r° + 70r?)

with

T

t—t
ot —to

Jean LEVINE Flatness Based Control




Positionning Systems

Oscillating systems Crane

o

2

"
Goz o0t o0 ooa 01 01 om 0% 0@ 02 00z 00i 005 008 01 o2 014 0% 013 02

Stage (left) and base (right) rest-to-rest displacements.
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Positionning Systems
Oscillating systems Crane

Closing the loop. ..
Recall: base position and velocity not measured.
F = Fer — Kp (X - Xref)t_ Kp (X - Xref)

i [ (x(0) = Xer(0)

to

...in the classical way

Xg: perturbation. ...in the flatness-based way
Model in this caseM X = F Reference trajectorieses and
and reference trajectories: F.e¢ defined as before.

Xref =Y, I:ref = My

Jean LEVINE Flatness Based Control



Positionning Systems
Oscillating systems Crane

T T

Classical controller. 25 mm dlsplacement of the stage uiBs (Ieft)
base dlsplacement (center) and stage acceleration (rlght)

Flatness- based controller 25 mm dlsplacement of the stage i”2Bs
(left), base displacement (center) and stage acceleration (right).

Jean LEVINE Flatness Based Control




Positionning Systems
Oscillating systems Crane

Crane Control

Model (recall)

mxX = —T siné
mz = —T cosh + mg

MX = F — A(X) + T siné
J.. L
—L=—7t—p(=)+Tp
P P

X = Lsind + X
z= L cosf

Jean LEVINE Flatness Based Control



Positionning Systems
Oscillating systems Crane

Flatness (recall) :

X—X)P2+22=1L2

X = Lsing + X §
X — X
{z:Lcose tang = ——
z
.. H X
{ mX = —T sind tanf = —g
mZ = —T cosf + mg T2 =m? (2 + (2— 9)?)
% — X % Xz
tang = =g = X=X—g
z Z—g -9

Summary:(x, z) flat output

_ . _
X:x—_,xZ L= ((x—X)?+2%)?2, tand __X
Z—g Z—g

T= m(>'(2+(2—g)2)%

Jean LEVINE Flatness Based Control




Positionning Systems

Oscillating systems Crane

Rest-to-rest trajectory of the load

t—t \°
Xref (1) = X + (Xt — X;) .
x (126—420(t : )+54o<t b )
tr — tr — ¢
T—i ) t—t \*
~315 70 .
(tf—ti) " <tf—ti>)

. . Zi — Z
straight line: zef(X) =z + ~

X — X
v ( )
parabola z.e¢(t) =

Z + (Zf _ Zi) (Xref(t) + X — 2)_(> (Xref(t) — Xi)

Xt + X —2X Xt — X
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Positionning S
Oscillating systems Crane

<
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Positionning Systems
Oscillating systems Crane

Output Feedback Trajectory Tracking

Only X, X, L andL measured(, z, 6) not measured).

PID controller: ) )
F= Fref - kF,P(X - Xref) - kF,D(X - Xref)

T = Tref + kr,P(L — Lyref) + kr,D(L - I;ref)

Theorem (consequence of the LaSalle Theorem):

To every rest-to-rest trajectory and evégyp, ke p, K, p, k; p > O,

there correspond a tubular neighborhood of the trajectory such that for
every initial condition in this neighborhood and every perturbatio

such that the trajectory remains in it, the closed-loop system withjthe
above PID controller is asymptotically stable.
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Oscillating systems Crane

Reduced size US Navy crane (B. Kiss, J.L., Rillaupt 2000)

\.
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Positionning Systems
Oscillating systems Crane

More and more difficult: the juggling robot

- Pmmm ) st
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Extensions

Example of Extension to Infinite Dimensional Systems
Polymerization Reactor (N. Petit et al., J. Process Control, 2002)

Model (delayed system) cops

. 1 }F o Hydrogen: v e ﬂ\_

Qa =u(t — (S) — ;Qa k \|,‘Tnm“ f ;_.‘{ :&Ewllng

. X I’I | | Li_\___ ___‘{; \nj—.

X:Qa(ax+ﬁ)—yx+§—1_x o J{ R

CHZ =V — g(Cst Qa) \____: \_____;\ Reactor

. 1 I C b __{,.__" __: /__i ., Separston

A== (a )c()g H, +D—2) =) L _‘

Yi=¢o—F I— \\<
1-X L —

Yo = eXp(A)

Qa amount of catalystX rate of solid,CH, concentration of hydrogen,
A log of melt-index of polymern) amount of input catalyst per unit of time,

v amount of input hydrogen per unit of time per unit of volume.



Extensions

Flat output:(X, 1)

Xy X —E%
a= ocX—i—/?L
ut — o) = Qa+;QaéU(x, X, X)
1 .
C:H2 :exp(e—l(rk+k—b))
v = Ch, + 9(Chj. Qa) = N(X, X, A, 4, )

Consequences:

Motion planningas in the finite dimensional case.
Trajectory trackingontroller using the deviations with respect to tf
predicted references.

ne
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Conclusion

Conclusions et perspectives

Numerous industrial applications:
e asynchronous motors (Schneider-Electric)
@ mecatronics (Bosch)

e automotive equipements (Valeo, Bosch, PSA,
Siemens Automotive (IFAC Congress Applications Paper Prize
2002 to Horn, Bamberger, Michau, Pindl))

underwater applications (IFP)
high-precision positionning (Micro-Coritie)
magnetic bearings (Alcatel, Axomat GmbH)
chemical reactors (Total-Fina-EIf)
biotechnological processes (Ifremer)
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Conclusion

Flat output computation: linear motor with a single
auxiliary mass

Model (recall)

M% = F —K(X — 2) — I (X — 2)
mzZ=k(X—2)+r(X—2)
Settings = &
(MS? +rs+kKx=(s+kz+F
(MS +rs+k)z= (rs + k)x

X=P(s)y, z=P,(9y, F=0Q()y
(MS +rs + K)P,(S) = (rs + k) Py (s)
thusPy(S) = (M +rs+K)Py, P,(S) = (rs + k) P,.
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