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What do DC drives, cranes, motion control systems or
chemical reactors hold in common ?

DC Drive Overhead Crane

Motion Control Stage Chemical Reactor
Jean LÉVINE Flatness Based Control
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DC Drive

System:

L
d I

dt
= U − RI − Kω

J
dω

dt
= K I − Kvω − Cr

Control variable:U

Property of the outputy = ω (Cr known)

ω = y

I =
1

K
(J ẏ + Kvy + Cr )

U = L
d I

dt
+ RI + K y

=
K 2

+ RKv
K

y +
R J + L Kv

K
ẏ +

J L

K
ÿ

+
R

K
Cr +

L

K
Ċr
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Motion Control Stage

System (1 d.o.f. case):

Base

Stage
F

-F

G
ro
u
n
d

Passive
damper

k

r MB

M

x xB
O

Spring

Mẍ = F
M ′

B ẍB = −F − kxB − r ẋB

Control variable:F

Property of the output

y = x −
r

k
ẋ +

1

M
(M ′

B −
r 2

k
)xB −

M ′

Br

Mk
ẋB

x =
M ′

B

k
ÿ +

r

k
ẏ + y,

xB = −
M

k
ÿ

F = M

(
M ′

B

k
y(4) +

r

k
y(3) + ÿ
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Overhead Crane
System (2 d.o.f. case):

O

X

L

T

mg

θ

z

xM
 F

τ
ex

ez

mẍ = −T sinθ
mz̈ = −T cosθ + mg
M Ẍ = F + T sinθ
J

ρ
R̈ = −τ + Tρ

x = X + Rsinθ
z = Rcosθ

Control variables:(F, τ )

Property of the output y = (x, z)

X = x −
ẍz

z̈ − g
R =

z

z̈ − g

√
ẍ2 + (z̈ − g)2

θ = arctan

(
ẍ

z̈ − g

)
T = m

√
ẍ2 + (z̈ − g)2

F = M
d2

dt2

(
x −

ẍz

z̈ − g

)
+ mẍ

τ = −
J

ρ

d2

dt2

(
z

z̈ − g

√
ẍ2 + (z̈ − g)2

)
+mρ

√
ẍ2 + (z̈ − g)2
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ẍ2 + (z̈ − g)2
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Chemical Reactor

System (Aris & Amundson, 1958):

xF TF

x T
Q A B

r

ẋ = D(xF − x)− r (x, T)

Ṫ = D(TF − T)+ αr (x, T)+ Q

Control variable:Q

Property of the output y = x

T = T(x, ẋ) solution to
r (x, T) = D(xF − x)− ẋ

Q =
dT

dt
(x, ẋ, ẍ)− D(TF − T(x, ẋ))

−α (D(xF − x)− ẋ)
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Summary

In all these examples

there exists an outputy such that

y has the same dimension as the control vector;

all the system variables can be expressed in function ofy and a
finite number of successive derivatives.

y is called aflat output and the corresponding system is said to be
differentially flat .

Jean LÉVINE Flatness Based Control
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What for?

Generate and follow fast trajectories with complex objectives, using
poor actuators and sensors.

mass

flexible beam

bumper

linear motorrail

Mass=disturbance Flatness-based

linear motor

masses

bumpers

flexible beams

rail

Masses=disturbance Flatness-based

Jean LÉVINE Flatness Based Control
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Recalls on Differentially Flat Systems

c©M. Fliess, J.L., P. Martin, P. Rouchon 1991.

Definition

The nonlinear systeṁx = f (x,u), with x = (x1, . . . , xn): state
andu = (u1, . . . ,um): control, m ≤ n.
is (differentially) flatif and only if there existsy = (y1, . . . , ym) such
that:

y and its successive derivativesẏ, ÿ, . . . , are independent,

y = h(x,u, u̇, . . . ,u(r )) (generalized output),

Conversely,x andu can be expressed as:
x = ϕ(y, ẏ, . . . , y(α)), u = ψ(y, ẏ, . . . , y(α+1))

with ϕ̇ ≡ f (ϕ, ψ).

The vectory is called aflat output .

Jean LÉVINE Flatness Based Control
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Main advantages of Flatness

1 Direct open-loop trajectory computation, without integration nor
optimization.

2 Local stabilization of any reference trajectoryusing the
equivalence between the system trajectories and those of

y(α+1)
= v.

“Flatness-Based Control” = Trajectory Planning
+ Trajectory Tracking.

Alternative approach toPredictive Control
(see e.g. Fliess, Marquez 2001).

Jean LÉVINE Flatness Based Control
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Consequence on motion planning

To every curvet 7→ y(t) enough
differentiable, there corresponds a
trajectory

t 7→

(
x(t)
u(t)

)
=(

ϕ(y(t), ẏ(t), . . . , y(α)(t))
ψ(y(t), ẏ(t), . . . , y(α+1)(t))

)
that identically satisfies the system
equations.

x = f (x ,x ,u)

y
(α+1)+1)

= v

Lie-BLie-Bäcklundklund

t → (x (t), u(t))))

t → (y(t), . . . , y
(α+1)+1)

(t))))

•

(ϕ,ψ)(ϕ,ψ)

Jean LÉVINE Flatness Based Control
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1 Find the flat output initial and final conditions:

given find

(ti , x(ti ),u(ti )) (y(ti ), . . . , y(r +1)(ti ))
(t f , x(t f ),u(t f )) (y(t f ), . . . , y(r +1)(t f ))

2 Build a curvet 7→ y(t) for t ∈ [ti , t f ] by interpolation , possibly
satisfying further constraints.

3 Deduce the corresponding trajectoryt 7→ (x(t),u(t)).

Rest-to-rest trajectories:
given thus

ẋ(ti ) = 0, u̇(ti ) = 0 ẏ(ti ) = . . . = y(r +1)(ti ) = 0
ẋ(t f ) = 0, u̇(t f ) = 0 ẏ(t f ) = . . . = y(r +1)(t f ) = 0

Jean LÉVINE Flatness Based Control
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Consequence on trajectory tracking

Assume thaty, . . . , y(α) are measured or suitably estimated.
There exists anendogeneous dynamic feedback

u = α(x, z, v), ż = β(x, z, v)
such that the closed-loop system isdiffeomorphic to

y(α+1)
= v.

Given a referencet 7→ (yre f (t), vre f (t)) with vre f (t) = y(α+1)
re f (t), to

stabilize the tracking error ε = y − yre f we set:
ε(α+1)

= v − vre f = −
∑α

i =0 ki ε
(i )

with the gainski , i = 0, . . . , α, such that all the roots of the
polynomialsα+1

+ kαsα + . . .+ k1s + k0 have negative real part.
Thus‖ε(t)‖ ≤ Ce−a(t−t0) and, by continuity, locally,

dist(x(t), xre f (t)) → 0.

Jean LÉVINE Flatness Based Control
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Some usual critics

Flatnessoften understood asfeedback linearization.

questionable novelty

not robust (model dependent)

not physical (compensation of open-loop stable dynamics)

inapplicable with constraints

no systematic way to compute flat outputs

and so on. . .

Are they right?

No!!! See next slide. . .

Jean LÉVINE Flatness Based Control
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Benchmark :

Displacements of an undamped
pendulum

at high speed

without oscillation at the end

without overshoot

without position sensor

moteur

axe de rotation

pendule

amortisseur indicateur
de position
verticale 

PID on the motor position Input filtering

Flatness-based

Thanks to the help of Micro-Contrôle

(subsidiary of Newport Corporation.).
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Conclusions :

no feedback linearization(only the motor position is measured)

novelty: improvement w.r.t. input filtering

robustness: depends only on the pendulum period

physical aspects: no dynamical compensation (open loop)

constraints: no problem.
flat output computation:

in the linear case: see J.L. and D.V. Nguyen, Systems & Control
Letters, 2003,
in the general case: J.L., Proc. NOLCOS 2004, Stuttgart.

Jean LÉVINE Flatness Based Control
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DC Motor
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DC Motor
Linear Motor

DC Motor Start-Up

From rest at timeti .
To stabilized speedω f at timet f .

Jean LÉVINE Flatness Based Control
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DC Motor
Linear Motor

System (recall):

L
d I

dt
= U − RI − Kω

J
dω

dt
= K I − Kvω − Cr

Flat output:y = ω (Cr known)

ω = y

I =
1

K
(J ẏ + Kvy + Cr )

U = L
d I

dt
+ RI + K y

=
K 2

+ RKv
K

y +
R J + L Kv

K
ẏ +

J L

K
ÿ

+
R

K
Cr +

L

K
Ċr

Jean LÉVINE Flatness Based Control



Introduction
Flat Systems
Comparisons

Oscillating systems
Extensions
Conclusion

DC Motor
Linear Motor

System (recall):

L
d I

dt
= U − RI − Kω

J
dω

dt
= K I − Kvω − Cr

Flat output:y = ω (Cr known)

ω = y

I =
1

K
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DC Motor
Linear Motor

DC Motor Start-Up
Step Reference Tracking

Speed step reference:

ω∗(t) = ω f Hti +ε(t), U ∗(t) =
K 2

+ RKv
K

ω f Hti +ε(t)

with Hti +ε(t) =

{
0 if t ∈ [ti , ti + ε[
1 if t ∈ [ti + ε, t f [

PID :

U = U ∗
− K P(ω − ω∗)− KDω̇ − K I

∫ t
ti
(ω(τ)− ω∗(τ ))dτ

Constraints:

|U | ≤ Umax,

∣∣∣∣d I

dt

∣∣∣∣ ≤ δ, |I | ≤ Imax

Jean LÉVINE Flatness Based Control
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DC Motor
Linear Motor

In every simulation:

ω f = 30 rd/s, durationT = t f − ti = 0.1s.

Initial errorω(ti ) = 0.087 rd/s (≈ 5◦/s),Cr = 0.5 Nm.

Umax = 25 V andImax = 10 A.

K P = 0.056,K I = 7.45 etKD = 10−5

(time constants: 10−2, 6.6.10−3 and 4.10−3s).

Variation ofδ (current rate limitation):
1 100 A/s
2 95 A/s
3 500 A/s.
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DC Motor
Linear Motor

δ = 100 A/s.
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DC Motor
Linear Motor

δ = 95 A/s.
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DC Motor
Linear Motor

δ = 500 A/s.
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DC Motor
Linear Motor

DC Motor Start-Up
Flatness-Based Reference Tracking

Speed and voltage reference trajectories:

ω∗∗
= ω f

(
t − ti

T

)2(
3 − 2

(
t − ti

T

))
U ∗∗

=
K 2

+ RKv
K

ω∗∗
+

R J + L Kv

K
ω̇∗∗

+
J L

K
ω̈∗∗

PID :

U = U ∗∗
− K P(ω − ω∗∗)− KDω̇ − K I

∫ t
ti
(ω(τ)− ω∗∗(τ ))dτ

Same gainsK P, K I andKD, same constraints, same initial errors.
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DC Motor
Linear Motor
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Final angular speed reached in 0.1 s without overshoot, with a
precision of≈ 0.1 mm/s for aspeed current rate limitation 50 times
smaller(10A/s).
Consequences:energy savings, increased life duration.

Jean LÉVINE Flatness Based Control



Introduction
Flat Systems
Comparisons

Oscillating systems
Extensions
Conclusion

DC Motor
Linear Motor

Linear Motor with Auxiliary Masses
Single Mass Case

Model:

Mẍ = F − k(x − z)− r (ẋ − ż)
mz̈ = k(x − z)+ r (ẋ − ż)

Aims:

Rest-to-rest fast and high precision
displacements.

Measurements:

x andẋ measured,

z not measured.

mass

flexible beam

bumper

linear motorrail

In collaboration with Micro-Contr̂ole.
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DC Motor
Linear Motor

Diplacement without taking into account the auxiliary mass:

Mẍ = F + p (p : unknown disturbance)

Rest-to-rest trajectory (p = 0):

xre f (t) = x0 + (x1 − x0)

(
t

T

)4

×

(
35− 84

(
t

T

)
+ 70

(
t

T

)2

− 20

(
t

T

)3
)

Fre f (t) = Mẍre f (t) = 420 M

(
x1 − x0

T2

)(
t

T

)
×

(
1 − 4

(
t

T

)
+ 5

(
t

T

)2

− 2

(
t

T

)3
)
.
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DC Motor
Linear Motor

PID controller:

F = Fre f − kP
(
x − xre f

)
− kD

(
ẋ − ẋre f

)
−kI

∫ t
0

(
x(τ )− xre f (τ )

)
dτ
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DurationT = 0,5s (left) andT = 0,25s (right),
error of 20% onk andr .
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DC Motor
Linear Motor

Taking into account the auxiliary mass

Mẍ = F − k(x − z)− r (ẋ − ż)
mz̈ = k(x − z)+ r (ẋ − ż)

Flat output (J.L. and D.V. Nguyen, S&CL, 2003) :

y =
r 2

mk
x +

(
1 −

r 2

mk

)
z −

r

k
ż

x = y +
r

k
ẏ +

m

k
ÿ, z = y +

r

k
ẏ

F = (M + m)

(
ÿ +

r

k
y(3) +

Mm

(M + m)k
y(4)

)
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Linear Motor

Trajectory planning:

yre f (t) = x0 + (x1 − x0)

(
t

T

)5

×

(
126− 420

(
t

T

)
+ 540

(
t

T

)2

−315

(
t

T

)3

+ 70

(
t

T

)4
)
.

PID controller:

F = Fre f − kP
(
x − xre f

)
− kD

(
ẋ − ẋre f

)
−kI

∫ t
0

(
x(τ )− xre f (τ )

)
dτ
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DC Motor
Linear Motor

Videos

mass

flexible beam

bumper

linear motorrail

Mass=disturbance Input filtering

Flatness-based
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DC Motor
Linear Motor

Linear Motor with Auxiliary Masses
The Case of Two Masses

Model:

Mẍ = F − k(x − z)− r (ẋ − ż)
−k′(x − z′)− r ′(ẋ − ż′)

mz̈ = k(x − z)+ r (ẋ − ż)
m′z̈′

= k′(x − z′)+ r ′(ẋ − ż′)

linear motor

masses

bumpers

flexible beams

rail

In collaboration with Micro-Contr̂ole.
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DC Motor
Linear Motor

Flatness:

x = y +

(
r

k
+

r ′

k′

)
ẏ +

(
m

k
+

m′

k′
+

rr ′

kk′

)
ÿ

+

(
mr′

+ rm′

kk′

)
y(3) +

mm′

kk′
y(4)

z = y +

(
r

k
+

r ′

k′

)
ẏ +

(
m′

k′
+

rr ′

kk′

)
ÿ +

rm′

kk′
y(3)

z′
= y +

(
r

k
+

r ′

k′

)
ẏ +

(
m

k
+

rr ′

kk′

)
ÿ +

mr′

kk′
y(3)

F = M̂ ÿ + M̂

(
r

k
+

r ′

k′

)
y(3) +

(
m

k
M̄ ′

+ M̄
m′

k′
+ M̂

rr ′

kk′

)
y(4)

+

(
mr′

kk′
M̄ ′

+ M̄
rm′

kk′

)
y(5) +

Mmm′

kk′
y(6)

with M̂ = (M + m + m′), M̄ = M + m andM̄ ′
= M + m′.
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DC Motor
Linear Motor

Rest-to-rest trajectory:

y(t) = x0 + (x1 − x0)

(
t

T

)7

×

(
1716− 9009

(
t

T

)
+ 20020

(
t

T

)2

−24024

(
t

T

)3

16380

(
t

T

)4

− 6006

(
t

T

)5

+ 924

(
t

T

)6
)
.

x andF deduced fromy by the previous formulas.
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DC Motor
Linear Motor
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Without taking into account the auxiliary masses
(same PID controller as in the single mass case)
durationT = 0,25s, error of 20% onk andr
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DC Motor
Linear Motor
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Taking into account the auxiliary masses
(same PID controller with rest-to-rest reference trajectory)

durationT = 0,25s, error of 20% onk andr
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DC Motor
Linear Motor

Videos

linear motor

masses

bumpers

flexible beams

rail

Masses=disturbance Input filtering

Flatness-based

Jean LÉVINE Flatness Based Control



Introduction
Flat Systems
Comparisons

Oscillating systems
Extensions
Conclusion

Positionning Systems
Crane

Contents
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2 Recalls on Differentially Flat Systems

3 Comparisons with classical approaches
DC Motor Start-Up
Linear Motor with Auxiliary Masses

4 Flatness-Based Control of Oscillating Systems
High-Precision Positionning System
Crane Control

5 Example of Extension to Infinite Dimensional Systems

6 Conclusions et perspectives
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Flatness-based control of oscillating systems
High-precision positionning system

System (recall):

Base

Stage
F

-F

G
ro
u
n
d

Passive
damper

k

r MB

M

x xB
O

Spring

Mẍ = F
M ′

B ẍB = −F − kxB − r ẋB

Control variable:F

Flat output

y = x −
r

k
ẋ +

1

M
(M ′

B −
r 2

k
)xB −

M ′

Br

Mk
ẋB

x =
M ′

B

k
ÿ +

r

k
ẏ + y,

xB = −
M

k
ÿ

F = M

(
M ′

B

k
y(4) +

r

k
y(3) + ÿ

)
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Flatness-based control of oscillating systems
High-precision positionning system

System (recall):

Base

Stage
F

-F

G
ro
u
n
d

Passive
damper

k

r MB

M

x xB
O

Spring

Mẍ = F
M ′

B ẍB = −F − kxB − r ẋB

Control variable:F

Flat output

y = x −
r

k
ẋ +

1

M
(M ′

B −
r 2

k
)xB −

M ′

Br

Mk
ẋB

x =
M ′

B

k
ÿ +

r

k
ẏ + y,

xB = −
M

k
ÿ

F = M

(
M ′

B

k
y(4) +

r

k
y(3) + ÿ

)

Jean LÉVINE Flatness Based Control



Introduction
Flat Systems
Comparisons

Oscillating systems
Extensions
Conclusion

Positionning Systems
Crane

Rest-to-rest trajectories

Initial and final conditions:
initial time t0 final timet1

stage
x(t0) = x0
ẋ(t0) = 0,
F(t0) = 0

x(t1) = x1
ẋ(t1) = 0,
F(t1) = 0

base xB(t0) = ẋB(t0) = 0 xB(t1) = ẋB(t1) = 0

flat output
y(t0) = x0

ẏ(t0) = ÿ(t0) = 0
y(3)(t0) = y(4)(t0) = 0

y(t1) = x1
ẏ(t1) = ÿ(t1) = 0

y(3)(t1) = y(4)(t1) = 0

10 conditionsH⇒ 9th degree polynomial:
y(t) = y0 + (y1 − y0) τ

5
(
126− 420τ + 540τ 2

− 315τ 3
+ 70τ 4

)
with

τ =
t − t0
t1 − t0

.
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Stage (left) and base (right) rest-to-rest displacements.
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Closing the loop. . .

Recall: base position and velocity not measured.
F = Fre f − kP

(
x − xre f

)
− kD

(
ẋ − ẋre f

)
−kI

∫ t

t0

(
x(τ )− xre f (τ )

)
dτ

. . . in the classical way

xB: perturbation.
Model in this case:Mẍ = F
and reference trajectories:
xre f = y, Fre f = M ÿ.

. . . in the flatness-based way

Reference trajectoriesxre f and
Fre f defined as before.
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Classical controller: 25 mm displacement of the stage in 0.25s (left),
base displacement (center) and stage acceleration (right).
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Flatness-based controller: 25 mm displacement of the stage in 0.25s
(left), base displacement (center) and stage acceleration (right).
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Crane Control

Model (recall)

mẍ = −T sinθ
mz̈ = −T cosθ + mg

M Ẍ = F − λ(Ẋ)+ T sinθ
J

ρ
L̈ = −τ − µ(

L̇

ρ
)+ Tρ

x = L sinθ + X
z = L cosθ

O

X

L

T

mg

θ

z

xM
 F

τ
ex

ez

Jean LÉVINE Flatness Based Control



Introduction
Flat Systems
Comparisons

Oscillating systems
Extensions
Conclusion

Positionning Systems
Crane

Flatness (recall) :{
x = L sinθ + X
z = L cosθ

⇐⇒

 (x − X)2 + z2
= L2

tanθ =
x − X

z{
mẍ = −T sinθ
mz̈ = −T cosθ + mg

⇐⇒

 tanθ =
ẍ

z̈ − g
T2

= m2
(
ẍ2

+ (z̈ − g)2
)

tanθ =
x − X

z
=

ẍ

z̈ − g
H⇒ X = x −

ẍz

z̈ − g

Summary:(x, z) flat output

X = x −
ẍz

z̈ − g
, L =

(
(x − X)2 + z2

) 1
2 , tanθ =

ẍ

z̈ − g

T = m
(
ẍ2

+ (z̈ − g)2
) 1

2
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Rest-to-rest trajectory of the load

xre f (t) = xi +
(
x f − xi

) ( t − ti
t f − ti

)5

×

(
126− 420

(
t − ti
t f − ti

)
+ 540

(
t − ti
t f − ti

)2

−315

(
t − ti
t f − ti

)3

+ 70

(
t − ti
t f − ti

)4
)
.

straight line: zre f (x) = zi +
z f − zi

x f − xi
(x − xi )

parabola: zre f (t) =

zi +
(
z f − zi

) (xre f (t)+ xi − 2x̄

x f + xi − 2x̄

)(
xre f (t)− xi

x f − xi

)
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Parabola:

trolley

load
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Output Feedback Trajectory Tracking

Only X, Ẋ, L andL̇ measured ((x, z, θ) not measured).

PID controller:
F = Fre f − kF,P(X − Xre f )− kF,D(Ẋ − Ẋre f )

τ = τre f + kτ,P(L − Lre f )+ kτ,D(L̇ − L̇re f )

Theorem (consequence of the LaSalle Theorem):

To every rest-to-rest trajectory and everykF,P, kF,D, kτ,P, kτ,D > 0,
there correspond a tubular neighborhood of the trajectory such that for
every initial condition in this neighborhood and every perturbation
such that the trajectory remains in it, the closed-loop system with the
above PID controller is asymptotically stable.
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Reduced size US Navy crane (B. Kiss, J.L., P. Müllhaupt 2000)
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More and more difficult: the juggling robot
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Example of Extension to Infinite Dimensional Systems
Polymerization Reactor (N. Petit et al., J. Process Control, 2002)

Model (delayed system)

Q̇a = u(t − δ)−
1

τ
Qa

Ẋ = Qa(αX + β)− γ X + ξ
X

1 − X
ĊH2 = ν − g(CH2, Qa)

λ̇ =
1

τ

(
a logCH2 + b − λ

)
y1 = ϕ

X

1 − X
y2 = exp(λ)

Qa amount of catalyst,X rate of solid,CH2 concentration of hydrogen,
λ log of melt-index of polymer,u amount of input catalyst per unit of time,
ν amount of input hydrogen per unit of time per unit of volume.
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Flat output:(X, λ)

Qa =
Ẋ + γ X − ξ X

1−X

αX + β

u(t − δ) = Q̇a +
1

τ
Qa

1
= U (X, Ẋ, Ẍ)

CH2 = exp

(
1

a

(
τ λ̇+ λ− b

))
ν = ĊH2 + g(CH2, Qa)

1
= N(X, Ẋ, λ, λ̇, λ̈)

Consequences:

Motion planningas in the finite dimensional case.
Trajectory trackingcontroller using the deviations with respect to the
predicted references.
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Conclusions et perspectives

Numerous industrial applications:

asynchronous motors (Schneider-Electric)

mecatronics (Bosch)

automotive equipements (Valeo, Bosch, PSA,
Siemens Automotive (IFAC Congress Applications Paper Prize
2002 to Horn, Bamberger, Michau, Pindl))

underwater applications (IFP)

high-precision positionning (Micro-Contrôle)

magnetic bearings (Alcatel, Axomat GmbH)

chemical reactors (Total-Fina-Elf)

biotechnological processes (Ifremer)

. . .
Jean LÉVINE Flatness Based Control



Introduction
Flat Systems
Comparisons

Oscillating systems
Extensions
Conclusion

Flat output computation: linear motor with a single
auxiliary mass

Model (recall)

Mẍ = F − k(x − z)− r (ẋ − ż)
mz̈ = k(x − z)+ r (ẋ − ż)

Settings =
d
dt :

(Ms2
+ rs + k)x = (rs + k)z + F

(ms2
+ rs + k)z = (rs + k)x

Definition polynomials:

x = Px(s)y, z = Pz(s)y, F = Q(s)y
(ms2

+ rs + k)Pz(s) = (rs + k)Px(s)
thusPx(s) = (ms2

+ rs + k)P0, Pz(s) = (rs + k)P0.
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