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Challenge - Integrated Product Offerings
Complexity Managed Through Systems Engineering and Supervisory Controls
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Key Points

 Innovation in building system design and operation is an area of
opportunity for efficiency, safety and comfort
* Innovation can be found in integration
* Progress in the design of integrated systems requires:
(1) focus on modeling and analysis of dynamics and control;
(2) a design methodology and tools for embedded systems;
 Model based systems engineering is an enabler for the design and
Implementation of ideas

Why Now?

“Fourth broad trend I'll note is the increased system integration.
Products are smarter. Controls play a larger role.... We believe that
system integration trends will continue in homes, office and
supermarkets”

Geraud Darnis

Carrier President
Remarks made on July 1, 2004
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Systems Integration for Infrastructure Automation and Security

Effectively shape the behavior of products and services,
which may involve human decision making,
through controls and model and data-driven processes.

Systems engineering — risk assessments,
requirements, critical parameter
management

System level modeling — multi-scale
modeling, analysis and control design.

Control and Embedded system design tools
and processes — speed development time
and reduce risk.

Enablers

Monitoring — wireless sensor networks and
video to enable information acquisition and
analysis.

Decision Making —enable energy efficiency,
comfort and security, and decision support
for first responders




Integrated Cooling, Heating and Power (CHP) Generation
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Supervisory Controls Virtual Qualification Speeds Integration

Problem
Controller Integration PureComfort Model

PureComfort
Capstone system-level
Controller dynamic model

Carrier
Controller

Carrier controller
with modified software

Integrated Solution

New Carrier Controller

Accelerated Software
Qualification 2X

Risk Reduction — Virtual
testing of extreme conditions
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Integrated Solutions Through Wireless Sensor Networks (WSN)
WSN enables integration of capabilities

Mobile asset protection
Integrated control and security

Lower installation and
commissioning cost
Energy efficiency

Lower cost for wiring

. . Integrated control
Remote diagnostics

Energy efficiency Remote diagnostics
Emergency egress
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Integrated Concurrent Design Processes
From ITAPS to IBECS

Integrated Products - A unique offering of which value is
significantly higher than the individual components value.

Boeing 7E7Complete Power, Fuel and Thermal Management Solutions

Remote Power
Distribution

System s
- 7
S ITAPS ac\e . 4 Primary Power
' Distribution
~ a/ — System
Auxiliary Power 2
System -
y e — /‘A

Electric Power
Generating and
Start System

IBECS ...

Environmental
Control System

Integrated Building
Energy and Control
Systems

HVAC including Indoor
air quality

Integrated Concurrent
Design Processes

Cooling, heating and
power systems
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Integrated Design of High Efficiency Commercial Buildings
Current and Desired States

“A model-based systems design methodology to enable development of integrated HVAC
and CHP solutions and advanced controls tailored to needs of specific commercial building
market segments.”

Current State Desired State

= Build and test, sequential. » Model-based, concurrent.
Desig n = Component - oriented = Systems - oriented
Process = Rated, steady state “design point” = Performance quantified throughout dynamic

performance envelope.

» Proprietary scripting language — multiple » Model-based, industry-standard best-in-class

versions. tools.

= Proprietary physical layers (CCN) = Proprietary behaviors and algorithms.
Controls = Sequential development process = Concurrent development process.

= Qualified only at commissioning time » Qualify over entire design cycle.

o = Component oriented = Systems oriented
Sizl n_g _& ) = Rated “design point” metrics = Operating envelope metrics
SpeC|f|cat|on = Detached from industry-standard tools » Integrated into emerging construction industry
Tools = Prescriptive standards
= Proscriptive




Integrated Building Energy & Control Systems (IBECS)
IBECS -> NIST-funded project

Year 1 Year 2 Year 3
“Modeling Infrastructure”  “Lead with Controls” “Integrated value chain”
* IBECS facility » Advanced control capability * CHP model library
* Integration Enabled Model Library » Hardware-in-the-loop * Sizing, specification tools
» Top down software prototype » Optimization Tool prototype » Capstone CHP study including
* Prototype building study * Prototype studies optimization & top down tool.
* Requirements — metrics for
building classes
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Integrated Building Energy & Control Systems (IBECS)

A model-based systems designh methodology for development of
integrated HVAC/R and CHP solutions and advanced controls
tailored to commercial building market segments.

System-Level Model Hierarchy
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The IBECS Integrated Tool Chain
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Dynamic modeling & economic analysis of integrated HVAC/R solutions
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Envisioned IBECS Integrated Tool Chain
Automated Code Generation & HIL Simulation
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Model-Based Systems Engineering
System Modeling and Analysis in Design Phase enables Robust Solutions
Right the First Time!

Customer Critical ABC
R irement Parameters ABC
equiremen ° Use enhanced knowledge Customer
ABC of physics and sensitivities ;\\OQ Acceptance

to course correct

System
Requirements Product
Verification and
(g Deployment
Architectural Design and System
System Functional Design Verification
Preliminary Subsystem
Design Q% Verification
Detailed Component
Design Verification
Concept Build
>

Time to Market
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Typical Embedded Controls Opportunity
Address Issues in the Product Development Process

Product
Differentiation

| o a et ol it st
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=] Requirements
e | Management Product
— Quality
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Paper

Requirements X
Documents .
Avoid
Obsolescence Truck Trailer
- Container
Applications
Embedded -
System Minimized
Rework

Circuit Board



24

Platform Based Design

Distributed
Development System
of Distributed Sign-Off!

System

Sub-System(s)
Integration, Test
and Validation

Distributed
System
Requirements

Distributed
System
Partitioning

Sub-Systems Model
Based Development
Sub-Systems (s)
Requirements

Network
Protocol
Requirements

Virtual Integration
of Sub-System(s) w/
Network Protocol,
Test, and Validation

Sub-System(s)
Implementation Models
Sign-Off!

Network
Communication
Protocol Sign-Off!
Sub-System(s)

Sign-Off!




Platform and Model Based Design Methodology

Functional
Verification

. |validation ~

Platform
Specification

P
Functional

Specification

Performance
Estimation




Embedded Control System Modeling, Analysis, Design, Testin

Bird Eye View

This subsystem manages all aspects of fire detection and confimation
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Model-Based Embedded Systems Development
Outline of the Process

ONONONONONONG

Define scope for modeling;
define separation of
application and platform

>

Define all external 1/O,
internal signals, & events;
create abstractions

Decompose top-level
functions into 1 or more
State Machines

Simulate & refine
State Machines

High-level functional
decomposition
(Pencil, PPT, Simulink)_|

Data dictionary

(Simulink busses)
7

State Machine(s)
(Pencil, Stateflow)

Basic test cases
(Signal Builder, Stateflow)

Generate test vectors and
perform coverage analysis;
check assertions

Test cases & Cov. report
(Reactis, TNI-Valiosys,

Simulink V&V) |

Automatic code generation;
verify code using test
vectors

ANSI C code, html report
(RTW or TL, Simulink)

[~

Verify generated code
on target

Test results
performance measurements

[~
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Platform Based Design Enables Platform Selection
Berkeley and PARADES driven initiatives

Application Space (Features)

Application Software

Application Instances

Platform
Specification

]| Platform API

System
Platform
(no ISA)

Software Platform

Platform Design Space
Exploration

Hardware Platform

- Platform Instance

Input devices

v

network

Architectural Space (Performance)
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UTRC: Dr. John Cassidy — UTC Senior VP Science & Technolog?’;




Integration for Commercial & Critical Infrastructure
Backup Slides
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The Key to Integration: Project Planning and Execution

Achieving Competitive Excellence (ACE) Through Adequate Processes

OSP - PDP Alignment Overview

Business Unit Passport Process

Phase Phase Phase Phase Ph
0 1 2 3

Opportunity ~ Concept Design & \/5lidation I
Analysis  Development Dev't Se

UTRC workshop on rigourous methods:
Gchubb 2 for embedded system design

‘Saptamber 15h & 16th, 2004

UTRC
Project
Planning &
Execution
4 0 1 2 P - s Process

Stage0 | Stagel

Opportunity | Opportunity
Identification Analysis
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Modeling, Analysis, Simulation, & Computation (MASC)
Enhancing the UTC Enaineerina Effectiveness

Modeling

* Equation-based model construction
* Model verification & validation
 Model maturation

Analysis
* Dynamical Systems
» Control Design
* Fundamental Limits

Systems

* Sensitivity & Uncertainty Engineering
Simulation .
Hardware-in-Loop (HIL) Computation
« Embedded SysteFr)ns » Solution Architecture Design

* Multi-scale, multi-fidelity integration
* Multi-Domain integration
* Algorithmics & Numerical Analysis

» Shared, Distributed Computation
* Protected External Participation

Make United Technologies a world leader in the effective use of modeling and
analysis for competitive differentiation of our products and processes, as measured
by development time and costs, system performance and robustness, and product
quality and reliability.
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Model-Based Systems Engineering
Iteration Through Systems Engineering Process For Design Objectives

Stages in the iterative design

System 4,
Functional ,?:/f% process are separated by key
% .Cf%é Decision Points

Design

Decisions are based on

S
&
2
oS . . . _
S information subject to:
® . .
3.2 » Imprecision
2% » Uncertainty

* Negotiation
* Misinterpretation

-
S

2

S Use model-based design

and analysis of dynamics,
Imprecision, and
uncertainty to reduce
decision risk



How to increase impact of Control Theory on Design?

A
| |
| i
| |
I I
| |
I I
| | |
I I I
% lifecycle cost: : % flexibility
System Design | Detailed Design | Production | System Use >
Synthesis Adjustment Evaluation AnalySisjifecycletime
Y
Future: design beneficial dynamics  Today: attempt to fix detrimental
=> exploit flexibility at low cost dynamics late in design cycle

Success Stories@ Education & Credibility &= Problem
N rd N

Management  Technical
personnel
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Uncertainty Propagation in Networks of Dynamical Components

Robust design process

Reduce Complexity
:l"‘%?‘ §°§

* "4« j‘?{}

é@% Interconnected system models |

Graph Partition
Decomposition of network into weakly
connected sub-networks and density

mapping facilitates computation of

Directed ac

lic graph
e

uncertainty propagation ww@

| Weakly/strongly coupled subsystems | @, '@
J A g (U) « New graph theoretic methods @

« Vertical-horizontal decomposition for hierarchical
networks facilitates uncertainty propagation

. i cell and DNA examples (~20 states)
f | Subsystem output uncertainty model
] fu(u) ﬂ e
) <M S
> ey wl

Uncertainty Propagation

System architecture

| System output uncertainty model |

Design Criteria ’

Assess Robustness

Decision Making in the Face of Uncertainty




