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Abstract— Traditional attempts at controlling rolling mills have ~ the major nonlinearity may be captured by equation 1 the
involved some linearization of nonlinear dynamics of the process, Gaugemeter equation.
and the subsequent employment of linear techniques to solve
the regulator problem. This paper illustrates some results in
the application of nonlinear techniques to the solution of the Il. PROCESSDESCRIPTIONEQUATIONS: SINUSOIDAL
rolling control problem. In particular the fairly recent techniques DISTURBANCE FREE MODEL
of adaptive backstepping and control based on passivation are
shown to be effective with various degrees of success. The We now briefly state the equations that govern the process
structure of the dynamics of the rolling stand and its suitability without any derivations; those have been done elsewhere in
to the straightforward application of backstepping or feedback particular [6]. The main control objective is the regulatiof

passivation is demonstrated. An approximate adaptive mecha- " . . ; . . .
nism for the identification of an unknown model parameter is €Xit Strip thickness: given an entry strip thickness . The
shown. main control will be a hydraulic input (work roll gagj that

Index Terms— Backstepping, Adaptation, Passivation. directly acts on the entry strip thickness. Indeed we have

h=S+P,/M Q)
|. BACKGROUND
Numerous thickness control strategies have been propo
for metal rolling mills (see for instance [1], [2], [3], [4]5],
[6]). In general the problem statement is related to theupet-
depicted in figure 1.

gvefberePa is roll force and M is the plant’s mill modulus?,
IS in turn given byP, = WkQ,P;\/R(H — h) wherek is a
resistance to deformatiofl’ the strip width,P; the effects of
tensionQ,, the roll force function and? the radius of the work
roll. In practice S is in fact a delayed signal of the applied
i rolling gap which we callS; in this discussion time delay
A. Mill system issues will not be discussed because of their minimal impact
Slip between rolls and the strip causes a difference between
the strip and work roll velocities; for exit strip velocity, and
ROLL | Lo work roll velocity v, we ha\{e the.forward slif given by
STAND Gaugeneter [ f = (vo—vy)/v-. Some spurious disturbance effects manifest
1 Rol themselves as transient changes in the value of the slip. It i
\ L assumed there is a means of inferring the slip through some
[ R0 8 secondary measurements such as the strip and motor vesociti
e
b Netr
Motor

A. Coiler and Uncoiler Equations

The uncoiler and coiler have similar structure and are effec
COILER tively symmetric see figure (1). The uncoiler consists of the
coil and and the pay-off reel connected to the drive motorvia
gear box. For the uncoiler whetg is circumferential velocity,

T, backward tensionR, radius, N, gear ratio, i, drive
current K, drive motor torque constant, anfl, the moment

of inertia one may write), = K,,R,/JuN, + R,>Ty/JuN.,.

The subscriptsu and p represent respectively the uncoiler
and payoff reels. Use is made of the tight coupling between
velocity and tension to regulate the tension by varying the
velocity. The inertiaJ, consists of the constant drive motor
Fig. 1. Typical Single Stand Rolling Mill inertia J,,, and a contribution from the varying coil radius.

. ) ] _ The relationship is in fact
The sources cited above liberally explain the control issue

pertaining to the rolling mill. We will see in effect that Ju = Jomp + 1pW (R, — Rppt)/2N,2 2)
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where R,,,, is the mandrel radius. While this relation is timeNow (8) may be writtenh = S + 6(H — h)l/2 where§ =

varying, we shall assume that our system is time invarianfM, M being a constant known to within a ten percent con-
because for all intents and purposes these radii do not ehafigence range. This equation can be differentiated on bath th
markedly from the nominal values assumed at the beginningleft and right hand sides to yield = S — 0% (H — h)’mh'e.
the analysis. Addition of robustness to the system comirail  After some algebraic manipulation it is clear that= g(h.)S

such a manner as to counteract the time varying effects , n = 0 i
ying @iere g(he) 1/(1 + 2\/m). One at this stage may

seen as bounded disturbanceg is instead much more pmﬂgCWroduce a new set of variables thus
Coiler dynamics are symmetrical to (2) above (the subse¢ript _
represents the tension reel). T = R
U1 = S
. . . To = Tpe
B. Tension Relationships T3 = Upe ©)
Strip tension generated by the difference between the ve- uz = dp
locity of the strip and that of the reels can be expressed as ry = Tye
. Ty =  Ute
Ty =EHW (v; —vp)/Ly 3) us = i
Tf — EWW (v, — v,)/Ly. (4) The system dynamics may then be summarised by the set of

differential equations in (10)

L, is the distances between the work roll and pay off reel, £, = g(z1)u

L, the distances between the work roll and tension réel, Ly = kixy — koxs + ks

the Young’s modulus of the striff); and7} the forward and I3 = boza + aguy -+ k4 (10)
backward tensions respectively. Tension must be mairdaine £y = —kszy + Bz + kexs — kr

within narrow limits to prevent the breaking or tearing oéth — dotts + cous + ks.

steel or in the other extreme the bunching up of the steeh Eve

when this does not happen the profile of the sheet may Vérrpe constants that appear in (10) are defined by the following

according to the variation in tension. Roll gap adjustmeag hS€t Of equations

an immediate effect on upstream tension, and smaller effect ay = Ku.R,/(J.Ny)
on the downstream tension [5]. by = sz/(JuNu)
C = Kth/(Jch)
IIl. OPENLOOPEQUATIONS
N do = R*/(JN)
A. Snusoidal Disturbance Free Model b —
1 = Qv

We begin by recasting the equations above to a more ky = oH
convenient form. We introduce the more familiar state space

z and shift the equilibrium so that it's at the origin of the new ks = avohy — alup
state space. Essentially the problem at hand is a regulation ks = boTy,

problem with the desired exit strip thickness given hy. ks = B(vo — vy)
One may then define an error in the strip thicknesgiven ks = Bh,

by h. = h — h,.. The takeup and payoff velocities may also ks = Bho(v— v0)
be referred to values,, and v, to give the error signals [ r(Vt = Yo
respectivelyv,. = v, — vy and vye = v, — vp,. Tension ks = doTyr
errorsTs. andT;. may be similarly defined to result [ﬁ}e = v = vo/(L+ f).
Bh(vs —v,) from (4), whereg = EW/L, is a constant. This
may be further rewrittefs, = Bh,(v; — v,) + Bhe (v — v,)
which may be expanded out intB, = 8h,vie + Bhyvi, —
Bh, o+ Bhevie+ Bhevy— Bhev,. Equation (3) may be written

It's then a simple matter to compute the constants once the

motor parameters are given. From the expression&{fand

k7 it is not difficult to see that under ideal conditions these

constants equal zero. We may in fact consider them zero excep
Tpo = oH (v; — vy) (5) atinstants that is, they may be generalised into distuganc

signalsks(t) andkz(t). Slip has been known to vary that is, it
wherea = EW/L, is a constant. We are given the relation suffers disturbance effects. The conservation of masstieqsa
suffer impulse type disturbances. We will not always make

vi = hvo/H ©6) explicit the time dependence &f andk, and will frequently
This may be substituted into (5) to yield drop them in analyses.
The = avohe — aHvpe — aHUp, + aoh, . (7) B. Model With Disturbance
Equation (1) may be written The sinusoidal disturbance effects have not been considere

above. To incorporate persistent disturbance effectssufs-
h=S+u(WH-—-h)/M=5+u(H —h, — he)l/Q/M (8) cient to replace the entry strip thickness with H + AH



where AH accounts for the persistent disturbance effect§he backstepping procedure begins with the construction of
We shall make a distinction between the former and a masecontrol Lyapunov function (clf), for example in this case
spurious and transient type of disturbance. The main type 6f = 33. Its derivative Vi = zqiy = xo(—koxs + ks)
disturbance on the system is a persistently exciting sidusanay be rendered negative definite to make the dynamics of
of the form §(t) = Agsin(wt + ¢) where A; = 0.2 mm, =, globally asymptotically stable. A choice df; = —a2

w = 22—” Aq and L are the magnitude and “period” ofand substution is sufficient to compute a desired psuedo (or
the thickness deviation respectively. Assuminghas been virtual) controlzsges = (ks +22)/ke. If k2 andks are known,
satisfactorily controlled it's clear this thickness ddioa is a a straighforward application is viable, whereas if they are
simple sinusoid of known frequency and magnitude. We shalhknown but bounded to known bounds, robustifying control
employ the internal model principle to reject this disturba. laws based on domination are effective. At this expository
For successful rejection, knowledge only of the frequenilly wstage we assume th&t and k3 are known. The control for
suffice; the controller in effect identifies both the phaséd arthe augmented systefs may be computed as follows; assume
magnitude of the disturbance to reject it's effects. The ehodthat x5 deviates fromrsg.s by z1. We may then write

of the system that incorporates the sinusoidal disturb@nce

T3 = Z3des + 21 = (3 + x2)/ka + 21 (16)

T = gl(wlvgvt)ul ‘th(t) . . x5 22 .
Zo = kizy — kows + ks — Agsin(wt + ¢) Introducing a new composne_clfg = 3 + 5 and rendering
Iy = boa + aguz + k4 (11) its derivative negative definité; = —z3 — 27, one may then
Zy = —kszy + Brixs + kexs — kr compute a suitable control law

Trs = doTs + cous + kg

Uy = —2T3des + 21 = —23 + (kg + 1/k2 — bo)l‘g + 2]433/]432

We note that [6] employs the internal model for disturbance (17)

rejection for a linear scheme. The functiops and g, that One can similarly repeat the procedure for thg, ('5) sub-
appear in (11) are defined precisely in the following equmtio System (or one may use the symmetry) to result in the stabil-

g1(he,0,t) =1/(1 + 0 _ ) and go(he,6,t) = ising control 43 = —2x5 + (—ke — 1/ke — do)w2 — 2k7 /K.

2/(H=h)tsin(wi+9) By further using the relations, = (i — k4)/a, andus =

Ow cos(wt) /(1 + 0 ). " 2 2 Mo 8
2y/(H—h)+sin(wi+¢) (us—kg)/c, one may compute the actual contralg,andug to
input into the system. We note that as computed is actually
IV. STABILISATION a differential of the desired control law and integral actie

This paper applies results explained in [7] and [8]. C|ear|5herefore required to generate the desired control efioithe
equation 10 may be considered a cascade of three subsystéifigial systems = [ u;dt. _
namely thei:, the i, i3 and theiy,is subsystems. These The tr_eatment above_ gives aflavqur of the methods available
cascades may be stabilised individually, with the hopeitiat for nonlinear control; it is true a linear method could have
terconnected individually stabilized cascades would bblet Stabilised theis, is or i4, 25 subsystems, and that approach
Indeed assuming an invertible (an examination indicates tf combining nonlinear and linear methods for stabilisatio
g is invertible in the range of interest)(d, z;) the control IS Not unusual. In this paper we demonstrate that methods

law u; = —z1/g(0, z1) stabilizes the first subsystem. For thd@sed on passivation (of which backstepping is an instance)
rolling mill are viable for the achievement of integrated solution to the

1 control problem. This paper focuses on the single stand with

9(0,21) = 12)

[2
1+ 2%(31 —x1)

a persistant sinusoidal disturbance. Simulation resdlthe
resultant controllers are shown.

with @ is unknown. This paper will show that an approximate

adaption law is able to give satisfactory results.

V. SIMULATION RESULTS

Assumingz; has been stabilised the remaining dynamicg gymmary of Smulation Constants

for the do. 2 . ary ¢ _
or the &5, 5 subsystem may be written Herewith is a summary of the values of the physical

Ty _ —kows + k3 (13) constants used in the simulation. The entry strip thickngss
T3 boxa + agug + k4 H =2 mm, the forward slipf =0.02. R, = R =1m, ap =
: TR ; bp=co=do=1m1' vg=595ms! h.=1.24 mm
With the substitutioni = ks we may write 0 0 0 1 Y0 o '
I y Ty = 7270 kg, Ty = 8283 kg. The sinusoidal disturbance
Ty _ —koxs + ks (14) AH is given byAH = Agsin(27rv;t/Lg) where Ly = 5 m

&3 bowa + U2 is the period of the thickness disturbance, ahig= 0.2 mm

realising a lower triangular subsystem that is stabilisab® the magnitude of the disturbance.
via backstepping. Any lower triangular system may be sum-
marised B. Open Loop Results: Disturbance Free Model

We begin first by showing the time history of the system
in open loop, in particular on the quantitiés 7y and T}
respectively the exit strip thickness, the forward tenshowl
the backward tension. Simultaneous unit step input$,of,

1 Ji(x122)

9b:2 _ f2(1’17:56275€3) (15)

fi;n fn($17x27"'xn7u)



and i, respectively the roll gap, payoff reel motor current 2) Internal Model Principle: The internal model principle
and take-up reel motor current are applied at time- 0. suggests that to reject a persistent disturbance, it's rdigsa
The evolution of the states of interest in that case is showmust exist in the closed loop control. In the case at hand the
in figure 2. The deterministic sinusoidal disturbancefris dynamics of the sinusoid may be incorporated into the closed
ignored in this instance. From figure 2 it is observed thatetheloop by cascading a sinusoid (in fact the Laplace equivalent
does not seem to be any obvious unbounded instability.ddstés included) to the respective plant outputs. This addsastle

h settles with a steady state error®@235 mm, whileTy and two states to the open loop plant for each output of interest.
T, oscillate sinusoidally with frequencies of approximatelyn general any output which requires the suppression of the
1 rad s! and 1.4 rad s! respectively. Ty has the larger sinusoid would be augmented with two additional states.
Any method of stabilisation may then be attempted on the

magnitude.)
augmented system. The dynamics of a sinusoid are lower
S triangular and their addition to the system does not alter
° | the lower triangular dependence of the dynamics. As such
i the whole system cascaded with a sinusoid is still amenable
e A / to stabilisation via backstepping. References [9] ,usib@],[
p f N VA O VA WA ; [11] and [12] demonstrates that for the problem at hand, the
£ W) /\, N \ ’ AN suppression of sinusoids in the non-linear functignsand
oL g s e ] g2 is straightforward, an example of the non-linear output
L Vv v regulation problem with full information. Indeed havingeth
- D ] variable . as an input into a sinusoidal filteﬁ-r#m
completes the solution. The two additional states from the

o 5 10 15 20 25 30
time(s)

second order oscillatory filter must be part of the contrdite
Fig. 2. Open loop time histories @f, Ty and Ty, achieve output regulatlon.

VI. ADAPTIVE CONTROL

C. Open Loop Results. Model incorporating sinusoidal dis- We recall that there exists an unknown parameétehat
figures prominently in all control laws formulated. This gar

turbance
o . . . meter is known to within ten percent of a certain nominal galu
When the deterministic sinusoidal disturbance is added éoThe problem of adaptivepcontrol in the non-linear setting
the H signal there is evidence qf a transient qscillationuabonas received a lot of attention in recent years. Resultsén th
:?a?nsifrid\xllalsl} :;eo;agﬁz ;zf)(as indeed there is around thqiterature appear most frequently for the type of equathat t
b £ can be stated as

&= f(z)0" + g(x)u (18)

D. Closed Loop Results
1) Back-stepping Control Laws: Application of the control where# is an unknown constant. Suppose wtteis known,
laws computed by the method of back-stepping in conjunctidthe appropriate control law is given by = k(x,0). The
with the control that stabilises; achieves the results shownproblem of adaptive control is whether the control law may
in figure 3 . It is observed in figure 3 that perfect regulatien iactually be framed as
ev_so_ ke u = l;:(z,

S E— 1 : (19)

| 6 = Aa,b)

>
=

/S whered, an estimate of the actual parameteis employed in

/ the control law in conjunction with some dynamic adaptation
1 ' mechanism,\ to ensure that the estimate converges to the
i ] true value of the parameter. Now it will be remembered our
; dynamic system in the absence of the sinusoidal disturbance
may be summarised as

TieToeh
!
A
T

15

wmetaeconds g = o(z1)un
Fig. 3. Closed loop time histories @éf, -7y, and 13, The effect of back- x_2 = kizy — kaws + k3
stepping control law xr3 = boxa + aguz + k4 (20)
Jf4 = —k‘5$1 + ﬂl‘ll‘5 + k}6$5 - k‘7
achieved forh, T, and Ty within about7 seconds of start up Ts = doxry + cous + kg
of the closed loop process. The tensmns experience owﬁsh%th g given by
of less thanl2 per-cent momentarily before settling. We will
i ' ' 0
seek in the following sections to guarantee convergencédy t glx1,0) =1/(1 4 ——2 ), 1)
use of other methods in particular adaption. 2,/(c1 — 1))



This relation (21) does not have the usual form for this type  *f - 7
of problem (as typified by equation (18)). Fortunately resul i
in [7], [13], [8] exist showing how an attempt at a solution
may be made.

magnitude

VIl. TESTCASES
A. Direct Estimation of Unknown Constant Gain

Consider b | A T S B B ]
T =0u (22) Time Bconds)

where is an unknown constant of known sign. This is théig. 4. = andd. Unfortunate choice of(0) (Simulink)

case of linear parameterisation for which firm results aretmo

frequently encountered. & were known then the contral =

—ca/8 with ¢ > 0 would result in GAS dynamics. # were  It's suggested in [8] that instead of estimatifigt might be

unknown it is reasonable as a first step to suggest a contpgpductive to instead estimate it's reciprogal’ with some

law of the form estimater. For this case the representative equation may be
w=—cx/0 (23) Wwritten

_ o _ _ _ 0t =747 (29)
instead. Indeed the justification for this step is the cetyai

equivalence principle. Defining an errd, the difference The corresponding control law in analogy with the previous
between the parameter estimate and the true value of #walysis may be written
parameter we can write

0=0+84. (24)
Substituting (23) into (22) we have

u = —rcx. (30)

Following the steps for the previous case, we obtain

. - u=—(0""—7)cz. (31)
Tz = Ou + Ou o5
= —cx—cx0h1. (25) 7o make conclusions about stability the Lyapunov function
We are unable to conclude immediately from equation (25) V= :Lj i eﬁ (32)
whether the equilibrium point, 8 = 0,0 is GAS. A Lyapunov 2 2

analysis has to be carried out to enable firm conclusions to Rejifferentiated to yield the relations
drawn. To that end we choose the Lyapunov function candidate ) )
- V = xx + Or7
2 62 — 2?4 Qe 4 OFF 33
V=—+— (26) = cx” + Gex”r + OFF (33)
2 2 —cx® + 0F(ca® + 7).
whose time derivative is equal to
One may chooses a parameter update law that guarantees

vV = m+é§ a NSD Lyapunov derivative. This law is shown to be=
JON ~ 2 a2 i i i i
N Q. Y. T (27) —cx”. Ttns upgate mechanism has a redeeming feature in that
B o - é because = —#, the derivative in the update law is greater than
= —cr® +0(—ca®07 +0). or equal to zero. This adaptive control law is therefore Istab
By choosing the so-called parameter update law of the ford®r any initial estimates' that are greater than zero. There is
. . a caveat however in that for actual physical systems signals
0=ca?9! (28) never perfectly converge to zero. The net effect of this @n th

the time derivative of the Lyapunov function is rendered Nsﬁarameter update law is to have a residual positive derezati

L . g o : he danger is then of a drift to infinity of the estimateln
That condition in conjunction with invariance property ma ; L o
. .. practice this is solved by switching off the update laws when
be used to conclude the GAS properties of the equilibriu . : . . ) . .
: required. Figure 5 is the corresponding simulation Witk 6,

point (z, 6) = (0,0). Now (28) may be writter = —cz*0~" . _ 1 ;(0)=4 and¢(0) = 0. Indeed one may choose any value

which indicates that there is the danger (going t0 z€ro o the initial parameter estimate with satisfactory resuln

with time, resulting in jumps in the valug. Some example attempt to extend the results for the following cases [9]
simulations indicate the potential pitfalls. This jump sually

dependent on the initial estimate for the paramet@r). A lot i = g(z)fu (34)
of times in the control literature this initial estimate ist 40 &t = g(@)u (35)
zero, highlighting the pitfalls that may therefore arisegure i = g(z,0)u. (36)

4 is the simulation for the case whefte= 6, c = 1 z(0)=4 and
6(0) = 1.33 . The value off equals zero for brief instanceswas unsuccessful in coming up with parameter update laws
which then destroys any meaningful control effort. that had no dependence 6én



adap1

Substituting (43) in (41) we can write

| VvV = xT + éé
i o 2 9~f(w)caz2 B écw2f(:v)
B cz” + A+0f(z))  (1+0f(z))

= —cx?+ észf(m)( 1+61f(z) - 1+91.f($)) (44)

| a4 [0 - (1467 (0))}
] =~ 4 e (@) T er o)
2 02cx? f(x)

© (H0f (@) (1+0f ()

If § is rendered always positive(both positive), then from fact

that f(z) is always positive it turns out that this approximate

adaptation (for lack of a better term) results in a negative

definite derivative of the Lyapunov function, assuring the

convergence of both andé to zero. Now this is not always

true and a mechanism to guarantee the positiveneésvoﬁld
Here we seek to investigate whether an adaptive law & required.

which one uses the estimatef ¢ in the update algorithm has

redeeming features, or alternately whether it might illnate A- A Smulation

a new method of attack toward the problem. We recal) (  From (21) we know the form of (z) (with &, denoted as

== —CX

15 2 2.5 E) 3.5 2 2.5 £
Time (Seconds; )

Fig. 5. x and 6. Stable parameter update law. (Simulink)

VIIl. A PPROXIMATE ADAPTATION

restated below for convenience z we havef(z) = Nﬁ = 12m. We set up the
' u in Simulink the structure for the adaption suggested by (43)
T = T10f@) (37) and arbitrarily choose values & 6(0) and the constants
andc;. With the following values) = 4, 6(0) = 0, z(0) = 1,
Consider the control law c¢1 = 3 andc = 1 the simulation results appear as shown in

. figure 6 While adaptation shows promise, methods based on
u=—(1+6f(x))cx (38)

Approximate Adaptive Law in Action

where d is an estimate of the unknown parameter and c is
a constant that is strictly positive. Clearly then (37) can b

restated
14 0f(z))cx
o _(+0f@)er @9 |
(1+0f(x))
We assume (24) holds and can then write after some algebra .-
. éf(x)cx ° T > s I 7 0 B 70
Tr=—cr+ ——~-—. (40)
(1+6f(x)) _ A _ _
Fig. 6. =z and@. Approximate adaptive control.
We use for analysis a Lyapunov functidn = % + % to L )
result in the time derivative robust domlnatlon of the unanV\Hwhave better results in that
. they provide guaranteed stability.
Vo= ) ngf?;ii . (41) IX. CONTROL BY PASSIVATION
= T Orere) T 90. We will illustrate a powerful passivation method to achieve

For a parameter update law we seek, as is the norm to fo%’és of the origin of the system

the two last terms in (41) to cancel. The parameter update law Ty = g(x1)u
that would achieve this would be Ty = kizy — kows + k3
) 9 T3 = boxo + agus + k4 (45)
0= — cx” f(x) ) (42) Ty = —ksx1+ Briws + kexs — kr
(1 + ef(x)) Ts = doxy + cous + kg

Unfortunately that adaptive law cannot be implemented bassuming there is knowledge &f It will be remembered that
cause it depends on the unknown paraméteht this stage Wwe anticipated that a credible control could be formulated a
we endeavour to find how the alternative parameter upddediows: design a stabilising contral, for the 2, sub-system
(43) would fare. It differs from (42) only in that substitutes and if the decay ofr; is rapid enough, it may be ignored

for 6 in the adaptive algorithm. completeley in the design for the,, 73 and thexy, 25 sub-
systems. However as the simulation in figure 7 shows if the
G cz? f(x) (43) control actionu, is not strong enough the whole system may

go unstable. In other words the system is not GS.

(1+0f(x))



X. PAsSSIVATION CONTROL OF CASCADES such thatZ ;W < 0. Suppose the interconnection term can be

We will seek to design a control system in which théactored as follows
interaction ofz, with the two other sub-systems is taken into Y(z,8) = ¥(2,§)CE. (49)
account to achieve GAS. We will appeal mostly to results that . . _
appear in [7] for answers to this problem. We briefly note th the linear systemi; with the transfer function

the most severe interacti(_)n with_thg system occurs |n 'Fhe Hy(s) = C(sI — A)_lB (50)
24, 25 SUb system. We will consider this interaction initially
and aim to resolve it. Our system is in the form can be formed such thdf is positive real then it is passive.

= F(2) (2, €) The nonlinear blockH, below may then be formed
z = z Za ) _
£ = At + Bu. (46) = f(2) + (2 E)uz (51)

We briefly recap on theorems and definitons that are goilgth it’s input given byu,; = C¢ = y;. We can freely choose

to be useful for our passivation and stabilisation procedur@s a design choice, an outputof H, that renderdi, passive.
We begin with a definition of passivity taken from [7] slightl Employment of theorem X leads to a passive interconnected
modified. Consider a square system i.e, with equal numbstem. UsingiV(z) as a storage function for foH, we

of inputs and outputs, H defined by require that
i = f(z,u), z€R" o oW 7 -,
H) Ly = hww), wye Rm W=~ (f(2) + (2, 1) < vz ua- (52)

Assume that associated with H is a bilinear supply ra{énowmg that ;W < 0, we satisfy (52) by selecting
- oW

w(u,y) = uly, w: R™x R™ such thatw is locally integrable

for all u € U whereU is a set of admissible controls. Integra- Y2 = ha(2,€) = (LJ;W)T(Z’@ = wT(W ) (53)
bility is captured in the relatiorf,” [[w(u(t), w(y(t))|dt < oo we makeH, passive. Via a feedback transformation
for all t; < ¢;. Let X be a connected set @™ containing
the origin. ThenH is passive in X if there exists a positive u=—hy(z,§) +v (54)
semidefinite storage functiofi(x), S(0) = 0, such that for \ye optain an system that is passive framto y;. Global
allz e X stability is then achieved by feedback
T
S@@»-S@m»g/'mmow@mt v=—cyn (55)
0

o ) > wherec > 0 is a constant.
If the storage function is differentiable we writg(x(t)) <

uTy. Next we state two theorems from [7] relating to the XI. APPLICATION OF PASSIVITY RESULTS
interconnection of passive systems and the stabilisation o
passive systems. Suppose that systemandH, are passive.
Then the systems, one obtained by the parallel intercoimmect .
and the other obtained by feedback interconnection, are bde’

Consider our system (45). Let's make the substitutions
Ts, 22 = x4 @and & = x1. Then momentarily ignoring the
23 dynamics (45) may be rewritten

passive. LetH be the system Z1 =dpze + U3
. Zy = —ks& + Bz1 + k21 — kr (56)
&= flou) (47) €= g(O)ur =v
y = hiz) J

) _ ) If we consider the output of the “linear” block to hg = ¢
1
and let it be passive with & storages. Then the feedback then all that is interposed betweenand ¢ is an integrator,

u = —y acheives asymptotic stability of = 0 if and only if i.e., a passive system exists. (Note the square root namiipe

H is zero state detectable (ZSD). For a linear system with%' - -
. ) s been subsumed in the control sigmalNow (56) may be
throughputi: = Ax+ Bu,y = Cz it can be shown [7] that its (56) may

e g T written as
passivity means there exists a storage funcfion) = x* Px . .
where P is a positive definite matrix satisfying , 71 = doz + s
T 7y = kez1 — k7 + §(—ks + Bz1) (57)
} 5rh :PC.S " (48) §=9(u =v
_ _ _ - with the interconnection term obviously defined and

A theorem which links the algebraic conditions of (48)
with frequency domain characteristics follows below. (KYP U(z,8) = { 0 ] (58)
lemma) If the linear system (A,B,C) is passive, i.e., there €(=ks + fz1).

exists a matrix P satisfying (48) then the transfer functioBecauseus; has not yet been defined, we can flexibly achieve

H(s) = C(sI — A)"'B is positive real. Conversely, if/ (s) the goal of a stable linear cascade= 0 for :=f(z) by

is positive real, then for any minimal realisation Bf s) there the judicious use of any linear stabilisation method (pole

exists P > 0 which satisfies (48). Consider now (46) anglacement, LQR etc). Indeed we can assume a control of the
suppose the equilibrium = 0 of 2 = f(z) is GS and aC? form

radially unbounded positive definite functid#i (z) is known U3 = —@121 — Q229 (59)



and a corresponding Lyapunov function

2 2
A, %
2

W(Zla Z2) = )

(60)

We know from (54) that a feedback transformation given by

v=—hy(2,§) +w (61)
achieves passivity fronw to y; where
o)
h =T (— ). 62
Noting that
ow
g = [Zl 22] (63)
and substituting in (53) we have Fig.
ha(z,§) = —ksz2 + B2122. (64)
Using (61) we obtain [
v = kszo — B2129 + w. (65) 2
The transformationw = —¢ completes the design. In the
original state space we have [3]
v =kszs — fasrs — 11 (66) 14
or (5]
_ __kszy—Brszs—x;
up = 0
1/(1+2m) , 67) [l
= (k5I4 — 5I51'4 — I’l)(l + m)
-
The other control is given by 7
8]
— — —k
g = a1r1 — 22 4. (68) ]

bo

It must be remembered; may be set equal to zero for[10]

analysis. [11]

(12]

XIl. SIMULATION [13]

If we place poles as followsts at —1 and z4 at —2 we
obtain a; 3 and ax = —2.6129. The simulation for a
gain k = 5 is shown in figure 7; that gain may be used as a
means of tuning controller action. Care must be taken though
not to make it too aggressive and bring into play unmodelled
dynamics.

XIIl. CONCLUSION

This paper demonstrates that the design of non-linear con-
trollers is viable for the rolling mill. The theory has maddr
enough in recent times to allow a straightforward applarati
of the results, and the explosion in computing power should
enable the implementation of some of these algorithms.
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