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Abstract: This paper describes a method that 

employs neural networks to detect and trace defects 

on helicopter rotors. The method analyzes signals 

of vibration measurements on the helicopter 

airframe to perform a diagnosis of the rotor before 

the rotor-tuning phase. The experimental phase –

 the basis of this paper – focuses on the behavioral 

analysis of the neural network with the aim of 

classifying the vibration signatures generated by a 

parametric model of the helicopter.  
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1. INTRODUCTION 

In the last decade, the helicopter has experienced 

the developments taking place in the information 

technology sector. The number of on-board systems 

has been increased to handle the vital tasks, such as 

piloting, navigation, and then maintenance and the 

comfort aboard. Attenuating the vibration level by 

active or passive means entails installing temporary 

or permanent systems on board. The vibration 

signal acquisition and processing functions can thus 

be partly or completely performed on the 

helicopter. 

For instance, defect monitoring and diagnosis 

systems are usually mixed, with acquisition and 

processing performed on board, and analysis and 

diagnosis on the ground. 

In the case of the helicopter, the defect monitoring 

and detection systems are applied to the dynamic 

components, such as the drive shafts, bearings, 

engines, and gearboxes (Giurgiuttu V., 2001). Often 

the methods are based on frequency analysis, time-

frequency analysis, and threshold-based diagnosis 

(as with Health and Usage Monitoring Systems 

[HUMS]). New methods, such as wavelets or 

Artificial Neural Networks (ANN) based on 

Kohonen's Self Organizing Maps (SOM), are being 

proposed for studying these types of applications. 

Their aim is to extract the signatures of the 

defective components from the helicopter's 

dynamics (Giurgiuttu V., 2001). 

This paper describes a method for detecting and 

tracing defects on helicopter rotors. The method 

employs competitive learning neural networks to 

discriminate between the signatures or images of 

the rotor defects. 

2. OVERVIEW OF THE PROBLEM 

The problem concerns the failure of the mechanical 

and/or hydraulic components used in the various 

types of helicopter rotors. The defects in this study 

are on the main rotor, which generates the 

helicopter's lift. 

No scientific or automatic method available today 

can replace the expertise of the specialists, i.e. the 

pilots, design engineers and flight engineers. 

Moreover, this expertise is specific to each type of 

helicopter and to each type of dynamic component 

(rotor, etc.)  
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Fig. 1: Schematic of a Helicopter Rotor 

Figures 1 shows the main components of a rotor, as 

well as certain components that often cause 

vibration problems. 



 

  

  

 

2.1 Defects Specific to Helicopter Rotors 

The defects on helicopter rotors occur on 

components whose mechanical characteristics are 

no longer within the specified operating tolerances. 

The defects are caused by timewise degradation 

(fatigue, drift), corrosive operating environments 

(e.g. salt mist), impacts, vibration, etc. 

Currently the defects are assessed by experience 

(how the physical phenomena are felt during the 

flight) and by the vibratory expertise of the flight 

engineers and pilots. Though advanced systems are 

used to measure the vibration levels, the systems 

are not specifically designed for this type of 

complex characterization. The identification of the 

defects is thus tricky as the method is neither direct 

nor scientific. 

Nonetheless, it is possible to give a short list of the 

transmission components generating the most 

frequent defects that cause problems in helicopter 

vibration tuning. 

- Inter-Blade or Drag Dampers: Of hydraulic or 

viscoelastic design, the dampers can cause ground 

and air resonance problems (coupling of helicopter 

roll and blade drag modes). These divergent 

phenomena appear in certain flight phases due to 

insufficient damping, and give rise to unstable 

unbalance problems, which vary with the power 

and are caused by insufficient static stiffness. 

- Attachments of Inter-Blade or Drag Dampers: 

Backlash in the balljoints attaching the dampers 

augments the vibration level at all the rotor 

harmonic frequencies. 

- Frequency Adapters: Made of laminated rubber 

parts and located at the end of the blade sleeves, the 

adapters cause unbalance problems (modulus and 

phases) that vary with the power level and are 

caused by insufficient static stiffness, 

- Blades: The vibration level at all the rotor 

harmonic frequencies is increased by cracks, and 

differences between the blades (fatigue-induced 

timewise drift): defects imprecisely identified. 

- Spherical Thrust Bearings (on Starflex rotors): 

defects imprecisely identified. 

- Rotor Shaft Bearing Stack: Usually indicated by 

an increase in the vibration level of harmonic 1. 

- Concentricity of Flared Casing: This defect is not 

precisely identified but is frequently identified by 

an increase in the vibration level of harmonic 1. 

2.2 Impact of the Defects on Rotor Tuning 

Today no helicopter rotor tuning method is capable 

of allowing for any defects on the rotors: the tuning 

operations are made under the assumption that the 

rotor is healthy and isotropic. When components 

are defective, the existing methods do not converge, 

and the optical sighting methods and manual 

methods (plotting points on charts) lose their 

effectiveness. 

In such cases, the experts have no choice but to 

apply their proven experience and "tweak" the rotor 

components until the vibration level is 

satisfactory – after numerous validation flights. 

2.3 Impact of Vibration on Human Health 

Four physical parameters are fundamental in 

determining how human beings react to vibration: 

its intensity, frequency, direction, and the duration 

of exposure. There are three physiological criteria: 

- Not to impair the level of comfort, 

- To maintain the ability to work, 

- To guarantee health and safety. 

These criteria form the basis of the international 

standards ISO 2631 and BS 6841, applied to 

analyze the discomfort level in ground vehicles and 

aircraft, and to determine the maximum exposure 

time to measured vibration that the human body can 

withstand (Teodosiu C., 2001). 

Both past (1940) and recent research work looking 

into the effects of vibration on the human body has 

fixed the vibration perception threshold at about 

0.01m/s
2
 for frequencies below 8 Hz (Griffin M.J., 

1990). Since a helicopter main rotor has a 

frequency between 4.4Hz and 6.6 Hz (harmonic 1), 

the frequency is critical in that it is close to the 

resonant frequency of the human body (Griffin 

M.J., 1990). Any defects generating the first rotor 

harmonic will therefore significantly affect the 

amount of discomfort in the vehicle. What is 

needed therefore is a method for detecting and 

tracing the rotor defects so that the comfort in the 

helicopter can be improved.  

 

3. PROPOSED METHODOLOGY 

The methodology applied in this paper to detect and 

trace rotor defects is based on having 

representations of each of the system's states 

(normal operation and operation with defects), then 

on discriminating between these states in a manner 

similar to pattern recognition methods. However, 

such a situation is ideal and is very unlikely to be 

encountered in practice. The systems to be 

monitored are too expensive and/or too critical, so 

that any thought of injecting the defects into them 

has to be dismissed (Basseville M., 1996). 

The methods for classifying data by neural 

networks ("black box" modeling) appear suitable 

for the discrimination of vibration signatures 

representing the states of the system (Oukellou L. 

& Aknin P., 1998; Fessant F. & Aknin P., 2000; 

Dujardin A.S., 2001). 

Write at least one sentence on the simulator which 

provided us with the data for the learning process 

(apprenticeship). 

 

3.1 Preliminary Simulations 

Signatures computed by simulation with parametric 

models were employed for the preliminary tests. 

This initial approach allowed the accelerations at 



 

  

  

 

different points on the helicopter airframe to be 

computed, and the ANN, adapted to the 

classification, to be evaluated in terms of the 

topologies and learning processes in comparison to 

the vibration signatures. Each signature is defined 

by the equation: 

 

( )Th,p,kfS γ=     (1) 

 

where γ represents the complex accelerations output 

by the sensors k, in a stable flight phase p at the 

frequency of harmonic h. Each signature 

representative of a defect or out-of-tolerance 

parameter is a residue computed with respect to the 

baseline signature (rotor tuned and with no defects). 

3.2 Artificial Neural Networks (ANN) for 

Diagnosis  

The following two types of networks were utilized 

to discriminate between the vibration signatures: 

MLP (supervised learning with back-propagation of 

the gradient) and SOM (unsupervised competitive 

learning) (Morel H., 2003). MLP networks have 

been found to have the following drawbacks: 

- local minimums are present during the learning 

process (Kohonen T., 2001), 

- it is difficult to set the size of the network (hidden 

neurons, hidden layers, activation functions, 

algorithm, etc.), 

- definition set of the signatures. 

In contrast, the unsupervised competitive learning 

attenuates the problems cited above. The SOM 

topology is hexagonal or more generally 

rectangular. The hidden neurons are connected to 

each other, and then to the neurons of the input 

layer. 
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Fig.2 : Topology of SOM 

 

 

3.3 Learning Algorithm 

The learning algorithm (computing the synaptic 

weights), developed by Teuvo Kohonen in 1984, is 

derived from Hebb's law (Hebb D.O., 1949 ; 

Kohonen T., 2001). The weights Wij are initialized 

randomly. Let E represent each input vector as 

follows: 

 
E   = [ e 1 , e 2 , ..., e n] 

T 
 (2) 

 

The algorithm computes the Euclidean distance 

between each of the neurons Xj from the elements 

en: 
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The "elected" neuron is the neuron whose 

Euclidean distance is minimum: 

)min(Xcélu
=         (4) 

 

The change in the weights of the neurons is 

computed as follows: 
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and then the change in the weights of the 

neighboring neurons is given by: 
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where µ and β are the synaptic weight change steps, 

µ for the elected neuron and β for the closest 

neighboring neurons. The algorithm then iterates 

this phase until the number specified in the learning 

process is reached. 
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Fig. 3 - Elected Neuron c and its Closest Neighbors 

Nc(t3), Nc(t2) et Nc(t1) 

3.4 Classifying the Static Defect of the Drag 
Damper 

3.4.1 Definitions 

For a helicopter rotor, it is first necessary to locate 

the defect in terms of rotor symmetry, and then to 

detect the type of defect. First, a class per rotor 

sector and then per type of defect is defined, and 

finally a baseline class is defined. In our case for a 

rotor with n blades and a given defect, all the 

classes to be learned are given by: 

[ ]refnc
C,C,...C,C,CE 321

=    (7) 

 

and then all the defects belonging to the classes by: 
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3.4.2 Testing 

The SOM self-organizes during learning, which 

separates the signatures of different classes, and 

positions the signatures of the same class according 

to the amplitude of the simulated defect. The figure 

below shows the rotor geometry through the paths 

formed by the learned signatures. 

 

 

Fig.4: Positioning of the Learned Signatures  

The SOM positions the baseline signature (• ) for 

different helicopter weights in the center of the 

map. The paths formed by each defect of increasing 

and decreasing amplitude pass through the center. 

The same principle is applied for positioning both 

unlearned defects, and superposed defects of the 

same class: unlike the MLP network tested (Morel 

H., 2003), the SOM correctly identifies the 

unlearned signatures, where ♦  and •  are the values 

respectively below and above the baseline value 

(zone 1). 
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Fig.5 : Representation of Unlearned Signatures 

It is seen, that the SOM is capable of discriminating 

between the signatures containing different classes. 

The figure below shows the positioning of 

signatures with two classes (• ) and three classes 

(4) superposed, the positioning depending on the 

defect amplitude. Note that the SOM places an 

image signature of two defects existing on two 

opposite blades and having the same amplitude (g) 

in zone 1 of the baseline signatures. 

 

 

Fig.6 : Representation of Signatures with 

Superposed Defects 

3.5 Discriminating Between Defects and 
Out-of-tolerance Parameters 

In addition to detecting and tracing the various 

types of defects, out-of-tolerance rotors must also 

be treated. Three tuning parameters can be modified 

in each rotor sector: mass, rod length, and tab 

incidence. The figure below shows the positions of 

the 4 classes in a dial on the map. The classes C2 

are C3 seen to be superposed and separated from 

classes C1 and Cbaseline. The superposition is due to 

the strong correlation between the vibration 

signatures representing drag damper defects 

(characterized by harmonics 1 and 2) and out-of-

tolerance weights (characterized by harmonic 1). C2 

differs from C3 by the phase of harmonic 2. 
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Fig.7: Classification of 4 Classes without 

Weighting 

It is possible to separate these two classes by 

weighting harmonic 2 to decrease the correlation 

coefficient of the signatures of C2 and C3. The next 

figure demonstrates that this separation can be 



 

  

  

 

achieved by weighting. Since C2 (out-of-tolerance 

weight) is independent of harmonic 2, C2 stays in 

the same position on the SOM. 
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Fig.8 : Classification of 4 Classes with Weighting 

of the Harmonics 

4. CONCLUSIONS AND PROSPECTS 

Currently, when simulating an anisotropic rotor, the 

helicopter model is simplified (blades and airframe 

assumed rigid, no landing gear), and the behavior of 

the helicopter on the ground is not integrated in the 

vibration signatures. The method can only be 

validated with confidence using the vibration 

signatures recorded in flight. 

By means of simulation, we have shown that the 

SOMs are capable of classifying the learned and 

unlearned vibration signatures having various 

classes of defects. There are several ways of 

improving class separation, i.e. by weighting the 

harmonics or by modifying the learning coefficients 

µ and β of the elected neurons and their nearest 

neighbors. The coefficients may be constant or 

decrease linearly during the leaning process 

(Kohonen T., 2001). 

We have observed that the rotor geometry produces 

symmetry in the formation of the signatures, and 

that this affects the self-organization of the SOM 

during learning. It appears feasible to consider a 

hybrid ANN architecture for classifying the 

signatures according to the two phases mainly 

applied in system diagnosis: 

- tracing the defect in the rotor sector using an ANN 

based on supervised learning, 

- detecting what type of defect is involved using the 

SOM that has learned the signatures corresponding 

to a sector of the rotor acting as a baseline (sector 1 

has been selected): Ec/SOM. 

By applying a phase shift equal to the angle 

between sector 1 and the sector corresponding to 

the class determined by the ANN during the tracing 

phase, only the set of Cn. defects can be shown on 

the SOM. This method optimizes the SOM surface 

and will cut down the computation of the separation 

surfaces of the classes. 
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