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Abstract: Model predictive control (MPC) technology has seen remarkable de-
velopment since its first appearance. Due to its success in industrial practice,
efforts to extend its application from unit-wide to plant-wide control are becoming
more widespread. Centralized or monolithic MPC schemes are impractical, and
often impossible, for large-scale, plant-wide applications due to reliability, main-
tainability and computational tractability considerations. In general, industrial
practice has tended toward a distributed MPC architecture; however, this common
decentralized approach has been shown to produce lower performance than a
centralized approach. In our work we propose to adopt the decentralized approach,
but to coordinate the individual MPC systems; thereby, gaining the performance
advantages of the centralized approach and the reliability, maintainability and
computational efficiency of the distributed MPC schemes. A further benefit of the
proposed approach is that it requires far less capital investment to gain equal
performance increases, in comparison to implementation of a new centralized,
plant-wide MPC.

In this work, we focus on the steady-state target calculation layer within
an MPC application. We draw on the Dantzig-Wolfe decomposition principle
in conjunction with a multi-column generation strategy to yield a coordinating
structure for decentralized MPC that realizes an effective trade-off between
centralized and decentralized MPC target calculation methods. Our approach
provides comparable performance to the centralized scheme, while retaining all
the benefits of the decentralized approach. In this paper, we discuss methods of
constructing information flow between the coordinator and the individual MPC
systems, which effectively deal with constraints that span multiple units.

To illustrate our approach, we use case studies to compare the performance
of all three control schemes (i.e., centralized, decentralized and coordinated). The
results show that the proposed coordination mechanism significantly improves the
performance of the overall decentralized control system.

Keywords: Model predictive control, Target calculation, Dantzig-Wolfe
decomposition, Multi-column generation, Coordination



1. INTRODUCTION

Model predictive control (MPC) strategies have
gained great success in a wide range of industrial
applications. The MPC framework can be further
divided into a steady-state calculation and a con-
trol calculation (or dynamic optimization) (Qin
and Badgewell, 2003). The goal of the steady-
state calculation is to calculate the desired targets
for output, input, and state variables at a higher
frequency than those computed from local eco-
nomic optimizers. The target calculation provides
optimal achievable set-points that are passed to
control calculation.

With considerable development in recent years,
there has been a trend to extend MPC to large-
scale applications, such as plant-wide control. Two
commonly used strategies for plant-wide MPC
control and optimization are centralized schemes
and decentralized schemes. A fully centralized or
monolithic MPC for an entire plant is often un-
desirable and difficult, if not impossible, to im-
plement, particularly for large plants (Lu, 2003).
Such a scheme can exhibit poor fault-tolerance,
require a centralized computational platform, and
can be difficult to tune. Alternatively, in many
chemical plants, large-scale control problems are
usually solved by using decentralized schemes be-
cause of their operability, flexibility and reliability.
In this paper, reliability refers to the possibility
that some control subsystems or portions thereof
are able to function when other subsystems fail.

Most MPC implementations, when considered
in a plant-wide context, have a decentralized
structured, with individual controllers working in
an autonomous manner without communication.
Such a decentralized scheme can only provide the
optimum of each subsystem with respect to its
own objective function, but this solution may not
be the plant-wide optimum. It is estimated that
the potential global benefit for a typical refinery is
2-10 times more than what decentralized control
by itself can achieve (Bodington, 1995).

This potential benefit has garnered increasing
interest of many researchers. Camponogara et
al. (2002) proposed a distributed MPC scheme,
where local control agents broadcast their states
and decision results to every other agent un-
der some pre-specified rules and this procedure
continues until no agent needs to do so. Re-
cently, coordination-based MPC algorithms were
discussed in Venkat et al. (2004), in which aug-
mented states are used to model interactions,
to improve plant-wide performance via the co-
ordination of decentralized MPC dynamic calcu-
lation. One common characteristic of the above
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two schemes is that the communication among
decentralized or distributed MPC controllers is
completed without a coordination system, and
thus controllers stand at equal status within their
negotiation. Alternatively, in Lu (2003), a cross-
functional integration scheme was developed, in
which a coordination “collar” performed a cen-
tralized target calculation for decentralized MPC.
This idea matches the wide-spread belief among
industrial practitioners (Scheiber, April 2004)
that the trend toward decentralization will con-
tinue until the control system consists of seam-
lessly collabrating autonomous and intelligent
nodes with a supervisory coordinator overseeing
the whole process.

Our previous work (Cheng et al., 2004) aimed at
developing a practical approach to coordinated,
decentralized control, using Dantzig-Wolfe decom-
position to coordinate plant-wide LP-based MPC
target calculations. This paper extends the pre-
vious work using multi-column generation tech-
niques to increase coordination efficiency in de-
centralized MPC calculations.

The outline of this paper is as follows. Firstly,
we briefly introduce the Dantzig-Wolfe decom-
position principle and multi-column generation
techniques. Secondly, we discuss a message con-
struction method for coordination mechanism de-
sign in decentralized LP-based target calculation.
Then, two illustrative case studies are presented.
The first compares the computational efficiency of
different optimization schemes through a Monte
Carlo simulation study, while the second demon-
strates one application of the proposed coordina-
tion approach. Finally, we end this paper with
conclusions and discussions.

2. DANTZIG-WOLFE DECOMPOSITION

2.1 Decomposition Principle

The Dantzig-Wolfe decomposition principle (Dantzig

and Wolfe, 1960; Dantzig and Thapa, 2002) is
depicted in Figure 1. A large-scale linear pro-

Sub. 1 |- - Sub. i |~ Sub. M

Fig. 1. Mechanism of D-W decomposition

gramming problem can be decomposed into inde-
pendent subproblems, which are coordinated by a
master problem (MP). The solution to the original



large-scale problem can be shown to be equivalent
to solving the subproblems and the MP through a
finite number of iterations. During each iteration,
the MP handles the linking constraints that con-
nect the subproblems, using the information sup-
plied by the subproblems [f;,u;]. f; is the objec-
tive function value and u; is the solution of the it"
subproblem. Then the MP sends its solution [, ;]
as price multipliers to all the subproblems for
updating their objective functions. Consequently,
the subproblems with updated objective functions
are re-solved. The iterative procedure continues
until convergence, which solves the original large-
scale problem.

Dantzig-Wolfe decomposition hinges on the the-
orem of convex combination and column gen-
eration techniques (Lasdon, 2002; Dantzig and
Thapa, 2002). Although any large-scale linear pro-
gram problem can be decomposed and solved by
Dantzig-Wolfe decomposition (Chvatal, 1983), the
approach is particularly powerful for structured
linear programs. Consider a block-wise linear pro-
gramming problem that has been converted to
Simplex standard form:

n
min 2z = E c;?rxi
=1

s.t. Z A;x; = by (1)
i=1

B;x; = b; (2)

x; >0 i=1,2,...,n (3)

where the constraints in (1) represent the linking
constraints associated with n subproblems, and
the constraints in (2) are the local constraints
of independent subproblems. Via the theorem of
convex combination, the master problem (MP)
can be formulated as follows using the linking
constraints in (1) and the convex combination of
the extreme points from (2), assuming that the
feasible regions of subproblems are bounded 2.

n N()
min Z9 = Z Z fij)\ij
i=1 j=1
n_ N(i)
s.t. Z Z PijAij = bo (4)
i=1 j=1

N(i)
D=1, X 20, i=1,2,..,n (5
j=1

where N(i) represents the number of extreme
points of the feasible region in the it* LP sub-
problem, and

2 Unbounded cases are also discussed in the related refer-
ences (Lasdon, 2002; Dantzig and Thapa, 2002)

N(i)

xi= Y Ajul (6)
Jj=1

fij =clu] (7)

pij = A} (8)

with ul the j* extreme point of it" subproblem.

The resulting master problem has fewer rows
in the coefficient matrix than the original prob-
lem. However, the number of columns in the MP
is larger due to the increase in the number of
variables associated with the extreme points of
all subproblems. The column generation method
discussed below provides an efficient approach
to dealing with the increase in the number of
columns.

2.2 Algorithms with Multi-column Generation

For a large-scale problem, it can be a formidable
task to obtain all the extreme points and formu-
late a full master problem. If the MP is solved
via the Simplex method, we only need a basic
set which has the same number of basic vari-
ables as the number of rows. Thus we do not
need to explicitly know all the extreme points of
subproblems. This leads to solving an equivalent
problem, the restricted master problem (RMP),
which can be dynamically constructed at a fixed
size by incorporating column generation tech-
niques (Gilmore and Gomory, 1961; Dantzig and
Thapa, 2002).

Assume that we have a starting basic feasible
solution to the RMP and it has a unique optimum.
The optimal solution provides us with Simplex
multiplier [r,v] for the basis in the current RMP,
with 7 associated with (4) and v with (5), re-
spectively. Then, subproblems are formulated and
solved to find the priced-out column associated
with )\ij:

fij = (] —mA)ul - 9)
and the i** subproblem is:
min 2 = (c¢F — 7A;)x;
st. Bix;=b;, x;>0 (10)

Therefore, we reach an optimal solution when the
following condition is satisfied:

,J i

Optimality and finite convergence have been
proved in Dantzig and Thapa (2002). When condi-
tion (11) is not satisfied, we have different column
generation strategies to determine the column or
columns to enter the basis.

In the single-column generation scheme, assume
the minima of problems (11) occur for ¢ = s and



xs(m) solves subproblem s, the column to enter
the basis is given by

|:As).(s(7r):| (12)

15

where i; is a m-component vector with a “1”
in position s and zeros elsewhere. Although the
generated column is associated with the most
favorable subproblem (i.e., that with the most
negative reduced cost), any other subproblem
with a negative reduced cost has the potential
to generate a column to enter the basis of the
master problem. Several variants of multi-column
generation techniques are discussed in Lasdon
(2002) and Dantzig and Thapa (2002). In this
work, we use the multi-column generation scheme
suggested in Lasdon (2002). Thus, to incorporate
all potential favorable proposals, a “new” column
is generated in the RMP for each subsystem by
applying (12):

n mo+n
min Z3 = Z Z fzj/\m +Zf ’\*
i=1 1
n mo—i-n]
t Y ) pihi +Zp,A* =by (13)
i=1 j=1
mo+n

Z Xij +Af =1, i=1,2,.,n (14)

Aij >0, A>0  (15)

where myg is the number of linking constraints
in (1). The above problem has n more variables
than constraints, rather than one more as in the
single-column generation case. If we use the size of
the coefficient matrix in Simplex standard form to
represent the size of the problem, the RMP with
multi-column generation has a size of (mg + n) X
(mo + n + n) while the RMP with single-column
generation has a size (mg +n) x (mo +n + 1).
One would expect a greater decrease in z3 through
every iteration, and thus significantly reduce the
number of iterations.

It has been discussed in Lasdon (2002) and veri-
fied by our direct experience that the advantage
of having more columns in the RMP outweighs
the disadvantage of increased RMP size. This is
investigated in the first case study.

In addition, it is also noticed that, within the
scheme described above, redundant columns may
be generated for the subproblems with unfavor-
able proposals at some iterations. When the num-
ber of subproblems is large, the number of redun-
dant columns in the RMP may be large, which will
reduce the efficiency of the coordination mecha-
nism. To develop a more efficient multi-column
generation strategy, instead of generating a new
column for each subproblem, we only generate
columns for subproblems with strictly negative
reduced costs. Therefore, the number of columns

in the RMP will be a number between (mg+n+1)
and (mo +n +n), or

n mo+n

min 23 = Z Z fzg/\zg"‘z.fk)‘*
i=1 j=1

n mo+n

Z Z plj)"bj + Zpk)‘k - bo (16)
i=1 j=1
mo+n
Z Nij +Ar =1, i=1,2,..,n (17)
Jj=1

Aij 20, Af>0, 0<K<n (18)

where k in (16) is associated with the correspond-
ing subproblem. Without loss of information, the
new formulation of the RMP can have fewer
columns than in (13) and (14), and thus may save
much computational effort. Such an algorithm is
under development, and is the focus of future
work.

3. COORDINATION IN PLANT-WIDE MPC
3.1 General Idea

Typically, in a process plant, the overall pro-
cess model used by MPC has a block-wise struc-
ture. Therefore, most process plants are potential
candidates for the application of Dantzig-Wolfe
decomposition to coordinate independent MPC
calculation. A coordinator can be designed by
considering different kinds of interactions among
operating units, which can be formulated as the
linking constraints. Since we are going to fol-
low the coordinator-individuals working mode, a
number of challenges still remain in synthesizing
efficient coordination, among which two key fac-
tors are: (i) computational efficiency of the co-
ordination mechanism; and (ii) information flow
load throughout the communication network in a
plant.

In this work, we focus on the design of the co-
ordination mechanism for steady-state target cal-
culation in MPC systems. The target calculation
problem commonly takes the form of an LP or
a QP problem (Kassmann et al., May 2000; Rao
and Rawlings, 1999). Here, we assume an LP
formulation for the target optimization.

3.2 Constructing Messages for Coordination

In this section, we are going to discuss a method of
off-diagonal message abstraction for coordination
system design. Here the term message refers to the
information that is available, but cannot be used
by current decentralized MPC. The abstracted
message will be used to design the coordinator.



Quite often, advanced control strategies are de-
signed and installed at different times for differ-
ent operating units. For example, in a copper
ore concentrator plant, model-based and model-
assisted APC controllers were separately imple-
mented in the crushing, grinding and flotation
sections (Herbst and Pate, 1996). In this case, cer-
tain controlled variables (CVs) and manipulated
variables (MVs) have been specified and paired in
a unit-wide sense. These unit-wide implementa-
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Fig. 2. A plant-wide process model

tion of APC strategies can only use the block-
diagonal information of the plant-wide model.
For instance, assuming a full plant-wide process
model G is available through identification, three
existing decentralized MPC systems are designed
based on block-diagonal elements G1, Gs, and G3
shown in Figure 2. Thus the off-diagonal elements
G;;, as one representation of interaction, are not
considered. Ignoring the off-diagonal information
can cause significant loss in performance.

Given the coordination mechanism of Dantzig-
Wolfe decomposition, if we can abstract off-
diagonal messages from the overall model for the
design of linking constraints, the coordination
only requires minor modifications to the objec-
tive function and constraints of each decentralized
MPC problem. Assume in the i** decentralized
MPC system the LP-based target calculation has
the form:

min czTXi
st. Y; =GU; + E' (19)
Uly S U; < Uy (20)
Vi <Y<Y (21)

where U; and Y; are the deviation variables of
MVs and CVs, respectively. X; contains vector
U; and Y;. Vector E* represents the unmeasured
disturbances. U, and Yji are the lower bounds,
while U¢, and Y, are the upper bounds for the
decision variables. To design the coordinator, we
can model the interaction as :

B, =Gyl (22
i#]
which will be Incorporated into the coordination

problem as the linking constraints introduced in
(1). This approach requires minor modifications

to the existing decentralized control systems by
adding the measured disturbance term E}, to each
individual model shown in (23).

Y; =GiUi+E7in + E? (23)

Thus the decision variables of each individual
MPC can be augmented as [U;,Y;, Ei]. We can
treat F; as an unrestricted variable or impose
rather loose bounds on it. Only the original CVs
or MVs will be implemented when the optimiza-
tion is accomplished. Furthermore, the objective
function of each MPC system gets dynamically
updated based on the sensitivity information [r,~]
from the coordinator which solves a master prob-
lem.

The coordination scheme is particularly computa-
tionally efficient for coordinating control systems
using a plant-wide model with sparse off-diagonal
matrices.

3.8 Algorithmic Coordination Strategies

Since we have discussed the method to construct
useful messages that can be used for plant-wide
coordination of decentralized MPC, together with
our previous discussion on the Dantzig-Wolfe de-
composition algorithms, we may be able to draw
a complete picture of the proposed coordination
scheme. Reduced to the simplest form, when we
focus on MPC target calculation, the proposed
coordination strategy is :

(1) Obtain existing decentralized MPC configu-
rations:

MPCz = {min Z; = CZTXz' | Bix,- = bz},
(2) Message construction for coordination and
linking constraints modeling: {A;x; = bo};

(3) Modifications to existing decentralized MPC
local constraints, if necessary,
{B; + B, UEL };
(4) Online coordination:
INT : [m,7] = 0, [fi, w;] = arg{M PC;};
WHILE any f; <0
col « column generation (f;,u;, A;);
[ﬂ'a Vs )‘] « CM‘g{RMP(COl, ui)};
[fisu;] « arg{MPC;(m,~)}; (In Parallel)
END
(5) Generate the plant-wide optimal solution:

4. ILLUSTRATIVE CASE STUDIES

4.1 Case 1: Efficiency of Decomposition Algorithm

To investigate the problem size scaling behavior of
the proposed coordination strategy, a set of Monte



Carlo simulations have been carried out as a step
toward understanding how the decomposition al-
gorithm will perform for large-scale LP problems.

In our experiments, several sets of test LP prob-
lems are constructed by randomly generating ele-
ments for the coefficients such that all of prob-
lems have optimal solutions. The problem size
reported is determined as the coefficient matrix
dimension in the centralized LP. In the central-
ized scheme, we use MATLAB’s “linprog” large-
scale algorithm, which employs an interior point
method, to solve the LP problems; while in the
decentralized scheme, the Dantzig-Wolfe decom-
position algorithms are applied.

During the course of constructing LP problems,
we follow the structure of Dantzig-Wolfe decom-
position. Firstly generate n feasible subproblems
of dimension mx N, and then construct mg linking
constraints where A has a dimension of mg x (N x
n). Thus we have a problem of dimension:

mo X (N xn)+ (mxn) x (N xn)
=(mog+mxn)x(Nxn) (24)
Note that, we generate subproblems of identical
sizes to balance the computational effort.

Five groups of Monte Carlo simulations have been
done, and the computational effort comparisons
are reported in Table 1 and Figure 3. In the sim-

Table 1. Computational Effort

Problem Size
[mo, m, N] = [20,30,50]

Central  Coordinated (s)
(s) Single  Multi

n =10 1.364 5.034 3.608
n =20 3.263 8.289 4.389
n =30 5.791 7.708 2.273
n =40 8.757 7.622 1.570
n =50 12.51 9.792 1.546
14
—Centralized
12r ©DW-Multi
*DW-Single

Computational Time (s)

40 45 50

% 15 20

25 30 35
No. Of Subproblems
Fig. 3. Computational effort comparison

ulations, we increase the number of subproblems
indicating that we can integrate more decentral-
ized control systems into the coordinated system.
The computational time for the decomposition
algorithms is estimated by summing up the time

for solving the master problem and the most time-
consuming subproblem, assuming a distributed
computational environment.

Evidently, compared with the single-column gen-
eration, the multi-column generation technique
leads to a significant reduction in the computa-
tional time of the decomposition algorithm, and
thus a more efficient coordination mechanism. In
addition, we also can notice that the computa-
tional time for the centralized scheme increases
monotonically with the problem size, while the
decomposition algorithms have good scaling be-
havior, which shows the decomposition and co-
ordination algorithms can be suitable for solving
large-scale problems.

4.2 Case 2: Method of Interaction Abstraction
This case study is carried out to illustrate the

application of the message construction method
for coordinating decentralized MPC. Shown in

i

(supervisory)
Coordinator

<—F

Fig. 4. An interacting MIMO unit network

Figure 4, a generic process network is used for
this case study. Described as follows, the overall
process network can be represented by an 8-input
and 6-output model G, which is a linearization of
the process around the operating point [yg, ug]:

Yo = [57 37 4; 27 8: 10]5
up = [0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5]; (25)

—-088149 0 —-236 0 —1.4

1.13 =05 O 0.24 0 -0.26

149 259 0 -119 O 0.77

T — 0 055 -042 -032 0 1.48
0 0 303 04 —-097 O 1.12
0 256 0 0 =025 0.06

0 066 0 0 =21 -0.55

0 020 0 0 -0.28 -0.61

where G is the steady-state gain matrix of the
process model G. The flowsheet was originally
decomposed into three operating units, each of
which has two output variables. Further, unit



A and unit C have three manipulated variables,
while unit B has two. Each operating unit has its
own objective, which is a subset of information
used by plant-wide optimizers. In this maximiza-
tion problem, the profit function cost coefficients
are

ch=1[23000] ¢c5=[1300]
ct=[47000] (26)

where the objective functions are only related to
output variables.

The decentralized MPC controllers use incomplete
process information and ignore the interactions.
Using off-diagonal message abstraction method,
we can model the interactions as the measured
disturbances and augment them in the model
of each decentralized MPC system as discussed
in (23). Note that, since the off-diagonal block
matrices are relatively sparse, the dimension of
E,, is only three. In this case study, we set the
upper and lower bounds of the decision variables
within £10% interval of the nominal operating
point, while treating the measured disturbance
variables as unrestricted variables.

Within this configuration, we can specify an in-
formation package which flows on the communi-
cation network that connects the coordinator and
individual control systems. Similar to Figure 1,
at every coordination round, each decentralized
MPC system submits to the coordinator a unit-
wide optimal solution X; = [V;,U;, E.] and cor-
responding objective function value f;. As soon
as it receives all the proposals, the coordinator
executes a linear program to solve the master
problem. Then the coordinator records the solu-
tion A;; and sends sensitivity information [r,~]
to the decentralized MPC. Here, 7 is related to
the measured disturbance E! , which can reflect
the gap between the plant-wide optimal solution
and unit-wide solution. In other words, when an
optimal E! is obtained through coordination, the
plant-wide optimum is reached. Note that the
information flow on the communication network
is not heavy and real-time communication is quite
possible.

To simplify the discussion in our case study, we
assume accurate modeling and noise-free simula-
tion. Therefore, in terms of plant-wide optimum, a
centralized controller provides benchmark perfor-
mance. With the above information, one execution
of plant-wide target calculation is performed with
three optimization schemes, the centralized, de-
centralized, and coordinated schemes, respectively.
The following tables provide simulation results for
comparison. Table 2 compares the performance of
different control strategies. We can see that the
centralized and the coordinated target calculation
schemes give the same achievable profit as the

Table 2. Performance Comparison

Strategy Profit Achievability  Computational
Ratio Effort (s)
Central 134.674 100 0.0359
Decentral  130.035 96.56 0.0304
Coordin 134.674 100 0.1990

*All the simulations were performed in Matlab 7.0 on
a Pentium IIT 1.0G Hz, 512M RAM machine.

benchmark optimum, while the fully decentralized
target calculation only captures around 96.56% of
the maximum profit.

The computational effort is also reported in Table
2 for completeness. Here the coordinated scheme
uses the multi-column generation based Dantzig-
Wolfe decomposition. The method used to eval-
uate the computational efficiency has been dis-
cussed in case study 1. We would like to point out
that, since the problem size in this case study is
very small, the decomposition/coordination strat-
egy may not outperform the centralized scheme.
This is consistent with our previous discussion in
computational efficiency study. When the number
and the size of subproblems are very large, which
is common in industry, the centralized problem
could be very large and require significant com-
putation.

In addition, we also can obtain information from
the simulation for simple comparison between the
two column generation schemes. Computational
times spent on the decentralized MPC (T-Sub)
and the coordination (T-RMP), as well as the
number of iterations to complete coordination, are
reported in Table 3. One purpose to introduce Ta-

Table 3. Single vs Multi-col. Generation

Column T-total T-Sub T-RMP Iteration
Generation Number
Single 0.199 0.187 0.012 17

Multiple 0.185 0.084 0.101 8

ble 3 is associated with an implementation issue.
Note that the computational time spent on sub-
problems has already been significantly reduced
by a large reduction of the iteration number (more
than 50%) for coordination. Keep in mind that
we are improving the plant-wide control system
performance with minimum modification to the
existing systems. A more powerful computing re-
source or a better solver could be used to reduce
the computational time for solving the master
problem, without expensive upgrading of comput-
ing for current decentralized MPC controllers.

A key point drawn from this study is that the
proposed approach may require far less capital
investment to gain equal performance increases,
in comparison to implementation of a new cen-
tralized, plant-wide MPC. As such, it provides
an approach to plant-wide control that does not
require centralized computing environment.



5. CONCLUSION AND DISCUSSION

Industrial practice has revealed the deficiencies
of existing decentralized MPC systems in finding
plant-wide optimal operations. Using a coordi-
nator with decentralized controllers can address
these issues. This work introduces a novel ap-
proach to coordinating decentralized MPC target
calculation by taking advantage of the Dantzig-
Wolfe decomposition algorithms. It also proposes
a message construction method for coordination
system design, in which the constraints associated
with multiple units can be Incorporated.

Our work shows that the proposed coordinated
target calculation scheme substantially improves
the performance of the existing decentralized con-
trol scheme, while it can utilize decentralized com-
puting environment to ensure acceptable real-time
calculation speeds. The proposed scheme only re-
quires a minor modification to the existing de-
centralized MPC structure. In addition, we have
verified that the multi-column generation tech-
nique significantly improves the computational
efficiency of Dantzig-Wolfe decomposition, which
makes promising the industrial applications of the
coordinated scheme.

A number of challenges remain. One issue that
should be investigated is how to integrate sub-
systems to ensure high performance with minimal
computation, e.g., for the decomposition should
one balance the computational load of each sub-
problem. In addition, a full understanding of the
complexity analysis of Dantzig-Wolfe decomposi-
tion is desired to determine the efficacy of the
proposed approach on industrial-scale problems.
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