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Abstract— There is some disagreement in the literature on (@(G)) should not exceed about 50. If this is correct then
whether large plant gains are a problem or not when it comes to it would have important implications on the design of many
input-output controllability. In this paper, the effect of two kinds processes.

of input errors is studied and controllability requirements are . . . - .
derived. First, input disturbances are studied. These may pse a . The objective of this Work is to study t.h's in more detail. It
problem if the plant gain is large at high frequencies. Secom, we is clear that the rule of [3] is reasonable if feedforwardtooin
study the nonlinear effect of limited input resolution which causes is considered because there will always be some error when
limit cycle behavior similar to that found with relay feedback. The  implementing the input and without feedback this cannot be
magnitude of these limit cycles depends on the high-frequey . ected for. However, in terms of feedback control, thie ru

process gain, but is independent of the controller tuning. fiey th v t b f | f
can be reduced by pulse modulating the input signal, but this cannot be generally trué because for some Classes Of pescess

may cause excessive input movement. In summary, large gainsit is well known that large process gains are not a problem.
at frequencies corresponding to the closed-loop bandwidtimay Consider, for example, feedback control of liquid leveltfout)
cause control problems, but large steady-state gains are hdy  ysing effluent flow (input). The steady-state gain is inficite
themselves a problem. . . to an integrating transfer function, but it is easily cofitiole.
Keywords: High gain, input disturbance, valve resolution, . '
quantizer, limit cycle, controllability, PI-controller. Nevertheless, high process gains may cause problems for
feedback control at least at high frequencies and the aitm®f t
|. INTRODUCTION paper is to study this in terms of input errors. Two main types
The main goals of feedback control systems are to stabili@éinput errors are discussed: input (load) disturbancesmat
the process and reduce the effect of unmeasured disturbarioaccuracy caused by limited input (valve) resolution. Mos
on the output to an acceptable level. A fundamental questiohthe results are derived for first-order plus delay proegss
arises: Is the process input-output controllable? Theee artherwise, when appropriated, more general derivatioes ar
many factors that need to be considered, and one of thenesented.
is the magnitude of the process gain. The gain depends on
the frequency and, for multivariable plants, also on theutnp Il. INPUT LOAD DISTURBANCE
direction. To quantify this, the singular values(G(jw)) It is well known that “large disturbances” cause control
of the process transfer functio6(s) are considered. Of problems. Without control the effect of disturbances on the
particular interest are the maximum and minimum singulautput isy(s) = Ga(s)d(s), and by “large disturbances” is
values, denoted (G) ando(G), respectively. In this paper, meant that the produét,|d is large. Here, input disturbances
for simplicity, SISO systems whew®(G(jw)) = o(G(jw)) = are considered, i.eG4 = G. First, a large plant gaifGG| may
|G(jw)| are mainly considered. cause problems for feedforward control. This follows beeau
It is well accepted that small process gains may caukds necessary to be very precise with the input change (e.qg.
problems, for example, with input saturation. For examplege eq. (5.70) in [2]). Thus, large disturbances motivdies t
[1] states that, with unitary scaling of the inputs and dasir need for feedback control, which is considered in this paper
output changes of magnitude one in terms of the 2-norm, theWith feedback control, “large disturbances” are not neces-
requirement for avoiding input saturationd$G) > 1, thatis, sarily a problem, but they pose limitations on the minimum
a minimum gain of one is required to have acceptable contrblndwidth. Consider a single disturbantend assume that
It is less clear whether large process gains pose a prohe reference is constant, i.e. = 0. Without control the
lem. [2] consider the condition number, definedg%’) = steady-state sinusoidal response frérto the control error is
(G)/a(G) and make the following conclusiorA large e(w) = Gq4(jw)d(w), where phasor notation is used. Assume
condition number may be caused by a small valug @), that the worst-case disturbance at any frequency(is =
which is generally undesirable. On the other hand, a largé) sinwt, i.e. |d(w)| = doy (Whered, is assumed constant at
value ofg(G) is not necessarily a problem. all frequencies), and the control objective is that the cular
On the other hand, intuitively, a large process gain may leeror is less thar,,.x at any each frequency, i.dg(w)| <
troublesome, because the output becomes very sensitihe tod,,.,. From this, one can immediately draw the conclusion that
input changes. [3] argue along these lines and claim that fow control is needed ifG4(jw)do| < emax at all frequencies
control purposes the magnitude of steady-state process @ which case the plant is said to be “self-regulating’¥



|Ga(jw)|do > emax at some frequency, then control is neededhus, there exist an upper bound on the allowed valug’ of
(feedforward or feedback). In the following, feedback coht Remark: (5) seems to indicate that a plant with a large
is considered, in which case(s) = S(s)Gqa(s)d(s), where steady-state gai is fundamentally difficult to control. How-
S = (I+GK)~! is the sensitivity function. Withd(w)| = do, ever, this is usually not true, because a large valuekdb
the requiremenfe(w)| < emax then becomes usually accompanied by a large time constanfor example,
. . for an integrating proces&:(s) = k’e~%%/s. Thus, there is an

1S(w)l - 1Ga(jw)ldo < emax Y () infinite steady-state gaik and also an infinite time constant
A plant with a small|G4| is preferable since the need for™-
feedback control is then less, or alternatively, given abeek 1. LIMITED INPUT RESOLUTION

controller (and thus giveR), the effect of disturbances on the . o o i
output is small. The implications of limited input resolution is studied &er

S| is small at low frequencies, so in general it does ndi® main reason for this is that [3], based on a case study,
matter if |G| is large at steady state. Howevgs) increases claim that this imposes limitations on the allowed steaidyes

with frequency and crosses 1 at the bandwidth frequency Process gain.

At this frequency A. Controllability requirement assuming sinusoids

|Ga(jws)| < Ymax/do (2) Consider a simple SISO example where the plant is given

. , by
Thus, (2) provides an upper bound on the allowed disturbance _ 2
gain at the frequencys. In most casef7,| becomes smaller Gls) = 100/[(10s +1)(s + 1)°] ©)
at high frequency, so the bound is easier to satisfywdf and the controller is
is increased. However, for stability reasons the valuevgf
is limited, and typicallyws ~ 0.5/6, whered denotes the K(s) = Ke(rrs +1)/71s, 7

“effective delay” around the feedback loop (just consider Ghich contains a dominant time constapt= 10, that cancels
as a first-order plus delay model with a PI controller tunegle pole inG(s), and K. = 0.04 is selected.

according to [4] and|S(jws)| = 1). The bound (2) then  The block diagram of the feedback system is depicted in
becomes Figure 1.

1G2(j0.5/8)| < Ymax/do 3)

This bound is independent of the controller, and thus prewid ___ _Process
a fundamental controllability requirement.

i
. . . + € ul Ug I
However, the purpose of this paper is not to consider plantg K ; G I >
for which |G| is large, but rather plants for whiclG| is vl- | - |
large. In practice, these are related because all plants hav lg‘iaft'_z‘ir _______ !
disturbances at the input to the plant. To this effect, atersi

input (load) disturbances withh;(s) = G(s)aq Whereay is a
constant gain. (3) then gives the following limit on the @il Fig 1. Feedback control configuration for the valve inaacyrproblem.
plant gain at frequencygs

. In this Figure,r is the set pointy is the plant outputy

(Ga(j0.5/0)] < 1/eta - ymax/do @) is the contrgllerK) output, anpdG igthe plar?t. The elrt)ement

Input disturbances are very common and have many sourcegled quantizer has been used to simulate valve inaccuracy
For example, in many cases the input is a valve which receivesThe effect is thus to quantize a smooth signahto a stair-
its power from a hydraulic system (e.g. the brakes of a cafep outputy,.
or from pressured air (many process control applicatioAs). uqg = q - round(u/q), (8)
change (disturbance) in the power system will then cause an . L .
input disturbance. The value af; will vary depending on the HE€"€¢ IS the quantization step and theund function takes
application. If it is assumed that the system has been Scaﬁgoargurnent to the.nea_lrest |Tt¢ger. The I|In|ted valvg il
such that the largest expected inpuis of magnitude 1, then results in a stepwise input “disturbance” of magnitude ¢qua

. : .0 the quantization stef,
it seems reasonable thay is at least 0.01, and that a typical D . .
value is 0.1 or larger. For the example given by (6) and (%)~ 0.03 is taking as

As an example consider the following pla(s) — the quantizerst_ep. Figure 2 shows the clpsed—loop resgonse
ke=0% /(75 + 1); Ga(s) = aaG(s), wherek = |G(0)] is the a _ste_p change in the _reference of mag_mtudeoH _1). From_
steady-state gain of the plant. The high-frequency asytejio this figure, the magnitude and the period of oscnlqnon@ in
G(jw)| ~ k/7w = K Jw, wherek’ — k/7 is the initial Slope are measured to be= 0.189 andT = 6.72s, respectively.

of the step response. (4) gives the controllability requizat L_|m|tlcycles are mewtablg if there is a quantizer and im&g
action in the controller. This follows because on average th

k/r=k <1/ag-0.5/0 - ymax/do (5) input must equal the steady-state valug = ys:/G(0) =



r/G(0), and if this does not happen to exactly correspond toLet a,,., denote the maximum allowed amplitude of the
one of the quantizer level, the quantized inpytwill cycle oscillations isy. Then, from (11) the following controllability
between the two neighboring quantizer levels,andg.. Let requirement applies

f and1 — f denote the fraction of time spend at each level. )

Then, at steady state,, = fq; +(1— f)ge and from thisf can |G (jwr,180)| < Tamaa /44, (12)

be found. Note that the closet,, is to one of these Va'“eS’Typically, amax Will be considerably smaller thagia., €.g.
the longer the timeu, must remain_ on_it. In the example,amax = 0.1ymax. (12) gives an upper limit on plant gain at
Uss = Yss/G(0) = 1/100_: 0.01_, which is c_Ioser tog; :_0 frequency where/L = —x (—180°). Usually,wy, 150 ~ 1.5/6
thang, = 0.03. The fraction of timeu, remains onj1 = 0iS  (jyst consider G as a first-order plus delay model with a Pl
f=1-0.01/0.3 = 0.67. As expected, this agrees with the;gntroller tuned according to [4] andL = —7).

simulations. For the system given by (6) and (7YL(jwr.1s0) =
15 ‘ ‘ ‘ ‘ —arctan(10wy, 180) — 2arctan(lwr 150) = —m which gives
wr,180 = 1.09 and the period of oscillation is found to be
1t : T = ;7= = 5.8. Moreover,|G(jwz,150)| = 4.13 and from
> (11), @ = 2¢|G(jwr,180)] = 0.158. This agrees quite well
057 1 with the simulation result$T" = 6.72,a = 0.189).
It has been assumed here that the resulting oscillations are
% 20 20 60 80 100 sinusoidal, but this is not quite true. Then, two questiamsea

What happens if the responseijiis non-sinusoidal? Does (12)
still hold? The answer for the last questioryiss as discussed

0.03 . .
in section IlI-C.
-0.02+ . .
= B. Non sinusoid responses
0.011

By taking the system described by (6) and (7) and using the

0 ‘ ‘ ‘ ‘ configuration of Figure 1 witly = 1 (representing the worst

0 20 0 e 80 100 case, an on/off valve), the simulation results for the ouipu
are depicted in Figure 3.

Fig. 2. Simulation results for the system given by (6) andf¢r)ro = 1. 25

Moreover, when the limit cycle is established the quantizer
can be regarded as a relay without hysteresis and thus can t 20 :
treated as such. The amplitude of the oscillations can tleen b
found analytically by considering the harmonic lineariaat
or describing function of the nonlinearity in the loop shawe L5
in Figure 1. >

For a relay without hysteresis, the describing function is
given by (see [5]):

N(a) = 4q/ma, (9)

whereq is the amplitude of the oscillations ards the relay
amplitude (like the quantization step).

For the system depicted in Figure 1, the condition for % 00 200 300 200 500 600

oscillation is simply given by Time
N(a)L(jw) = -1, (10)
. . . . Fig. 3. Simulation results for the system given by (6) andf¢r)q = 1.
where L(jw) = G(jw)K (jw) is the open-loop transfer func-

tion.

Since according to (9)V(a) is a real number, it follows
from (10) thatw is the ultimate frequencyy, 150 and K,, =
N(a) = 4q/ma is the ultimate gain [6]. As long as; in (7)
is sufficiently large, that is% is much smaller thaw;, ;so,
LK = =T 4 arctan(wp1s0 - 77) ~ 0. Then, ZL = ZG +

From the figure, it is clear that the oscillations are not
sinusoid-type. A deeper analysis by computing the power
spectrum of the limit cycle confirms this hypothesis. In Feu
4, there is a second peak of about 50 at 4 rad/s which shows
the data inconsistency, i. e. the limit cycles cannot be @ryp
. fitted to a sinusoid-type curve. From (11) afid= 27 /wy, 180
LK ~ LG, wiaso & wo o (Wraso 1 independent of both 4, o amplitude and period of the limit cycle are féund to be
K. and7;), and Ky = 1/|G(jwz,180)| which leads to a = 6.23 and T' = 6.28s which are very different from the

|G(jwr,180)| = wa/4q (11) measured results; = 1.82 and T = 26.48s. Consequently,



400

later. For this particular example they are measured to be
0.3 andT" = 16.07s, respectively. It can be seen that the output
E 300 of the quantizery,, oscillates between 0 and 0.03. The steady-
8 state value isuss = 0.2/100 = 0.002, which means it stays
@ 200 f = 0.93 (93%) of the time (15s) at 0 anfl= 0.07 (7%) of
E the time (1.07s) at 0.03.
% 100 Again, it can be argued that the response depicted in Figure
5 is non sinusoid and then again (12) cannot be applied
fL to assess the controllability of the system. This suggests
% 20 40 60 80 100 a different approach from the one derived in section IlI-B
Frequency (rad/s)

must be investigated. We have derived an exact analytical
. . i expressions for the amplitude and period of oscillationhef t
Fig. 4. Power spectrum of the limit cycle of the system désctiby (6) . . . .
and (7) forg = 1. limit cycle for a first-order plus delay process. The mairutes
is presented below without proof.
Theorem: For the system given by (13) and (14) set up
(11) cannot predict the amplitude for a non sinusoid resporccording to the configuration of Figure (1) with quantizer
and (12) should not be used to assess the controllability I6¥€lq, the amplitude and period of the limit cycle oscillations

such systems. are given by
We would like to perform an exact analysis. This is difficult, 1—e B/ e T/m _ o= (T—ta)/7
but we have derived exact results for a first-order plus delay a = kq T — =T/~ (15)
process (see next section). 1 1
C. Controllability requirement for first-order plus time Idg I=f  f
processes in the time domain wheret; = /(1 — f) and f is calculated fromu,s = fq1 +

In this section, non sinusoid-type quantitized responees 1(1 _ f)‘rJ]Q' | q he beginni  thi _
a first-order with delay plant controlled by a PI controller i ~OF the example presented at the beginning of this section,

discussed. The following example is considered the amplitude and period of oscillation calculated using) (1
' and (16) area = 0.3 and T = 16.07s, respectively which

G(s) = ke % /(rs+ 1) (13) match exactly the observed results. For this case, (11pgive
K(s) = K(r1s + 1) /778, (14) @=0.24andT =40 = 4s, that is, (12) can be considered a
more conservative bound.
with k£ =100, ¢ =1, 7 = 10, K. = 0.04, and7; = 10. In general, the minimum value fdf and the maximum

The loop is set up according to Figure 1. The simulatioamplitudea occurs when the set point changg, is such that
results forg = 0.03 and a step change of 0.2 in the referencg = 0.5. In this case]” = 46 anda = kq[(1 —e~2%/7)2 /(1 —

(ro = 0.2) are given in Figure 5. e~*/7)] and the results also compare well with the describing
function analysis based on sinusoids in (11).
0.4 Moreover, for the plant given by (13) and (14), assuming
0.3t 1 TI%T:>ZL:—wLJng—ﬂ'/Q:—WﬁwLJgQ:ﬂ'/Q@,
the corresponding period and amplitude of oscillationare
mo2 27 /w180 = 40 anda = kq %%, which for small
01r values off /T agrees quite well with the previous expression
% 20 40 60 80 100 for a in (15); see Figure 6 . L
Remark: Since (15) is derived taking into account the
approximationr = 7; which applies for well-tuned controllers
003 (see [4]), the amplitude and period of the limit cycle are
0.02+ | independent of the controller parameters
57 Again, it is required thatt < a,,4; and the controllability
0.0} 1 requirement for first-order plus time delay processes is
0 ‘ ‘ ‘ ‘ Umaz 1—e T/7
0 20 w0 60 80 100 |G(0)] < ¢ 1—et/m 4 e T/m(1—enlm) 17)
D. How to avoid oscillations
Fig. 5. Simulation results for the system given by (13) ant).(1 The oscillations in the output of the system showed in

Figure 1 can be avoided by the following ways:
The amplitude and period of the limit cycle gf can be a. Change the valve so that the resolution is enhanced
predicted for first-order plus delay processes as it is shown (small quantization step);



1-12; Using DF (3} 4/ quantizer. By applying this method, the response of theegyst
' —oE — given by (13) and (14) is depicted in Figure 7. As it can be
' seen, the amplitude is drastically reduced.
1 [fF=0.3 orO.7J /T_—j———:u
- 0.4
08 / fF=0or1 ] ’ -
= / : = | — With modulator
g /) [f=0.10r09 0.351 H = [ without modulator
S 06 = = &5
© % F=020r08 0.3}
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0/t 0.021
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0.01f

Fig. 6. The amplitude in (15) agrees surprisingly well witte tdescribing
function analysis (11) provided/r is small.

0 20 40 60 80 100
Time

b. Redesign the process in order to change the values of k,
7, andé (smaller effective delay); Fig. 7. Simulation results for the system given by (13) and) (dsing a
. . . odulator ¢o = 0.2).
c. Take away the integral action leaving solely a -
controller (may give a poor performance);
d. Introduce fast, forced cycles at the input with a higher IV. DISCUSSION
frequency than those generated “naturally”. For exam- [3] claim that an upper limit foi(G) should be imposed.
ple, one may use high-frequency pulse modulation dfris suggested that a reasonable limit is 50 because eakenti
add high-frequency sinusoids (sonig = sinwt which all control systems are eventually implemented with anadog
may wear out the valve). devices which typically have an accuracy on the order of 0.5%
The use of a P-controller (item c) can eliminate oscillagiorActually this is true only at bandwidth frequency whereas no
as long as steady-state offset can be afforded. In order ke m&uch limit exists at steady-state. Furthermore, it is alaoned
the offset as small as possible, bounds on the controller, gdhat it is impossible in practice to get the fine manipulatién
K,, are found to be (again, for the sake of compactness, fif¢ control valves that is required for control becauseehes

derivation of those bounds are not to be shown here): ~ Vvalves would be limited to move in a very small region.
Actually this is only true for feed forward systems without

% <K.< M, (18) pulsing. There will be no problem with feedback, but some
70 — NmazqG(0) 70~ NimazqG (0) cycling must be accepted.
wheren o = [r0/9G(0)]. [3] also claim that the cycling can be avoided by detuning

An attractive alternative, at least from a theoretical poirthe controller, but this is not generally true, unless one is
of view, is to introduce high-frequency cycling at the inputvilling to remove the integral action and accept an offséie T
(item d). The problem is that the fast cycling may be difficusimulation used by [3] to illustrate this claim is misleaglin
to handle in practice, for example, because the valve canhetause oscillations do start if the simulation time iséased.
be moved so fast or because of excessive wear. One approadin important distinction between input load disturbance
is to introduce a pulse modulator in the controller before thand valve inaccuracy is that, in general, in the latter a high



bandwidth has no effect on the controllability of the system
since controller parameters do not generally affect thet lim
cycle as showed for first-order plus delay process. Morgover
the requirement in (4) is more restrictive than the requeem

in (12) if |Gqldo > ¢/2.42 (to see this, consider the ratio
|G (jws)|/|G(jwz.150)| and (4) and (12)).

Two basic approaches to assess controllability are disduss
in this paper. But, in general, to make use of one or the
other, the resulting limit cycle has to be characterized. If
the process is a first-order plus time delay the controitgbil
requirement is directly given by (17). Otherwise, simuas
must be performed in order to determine if the limit cycle is
sinusoid-type, for example, by performing a spectral power
analysis. If the limit cycle is proved to be sinusoid-typ&2)
is used as the controllability requirement.

V. CONCLUSION

Processes with large gains are a major problem when input
load disturbance and valve inaccuracy problems arise. For
input load disturbance, high gain implies the need of a high
bandwidth which cannot always be achieved in practice.

When dealing with valve inaccuracy problems a different
approach has to be used since, in general, the controller par
meters do not affect the bandwidth. Besides, high gainsaive
large amplitude of the resulting limit cycles. For sinustige
limit cycles, the simple approach using harmonic lineditra
approximation are derived to assess controllability. As fo
first-order plus time delay processes, on the one hand, more
complicated expressions are needed to assess contiipflabil
but on the other hand, the results are exact. A general agiproa
to deal with valve inaccuracy is proposed.

In order to avoid oscillations due to valve inaccuracy one
may use a P-controller and performance may then degrade due
to offset. Alternatively, the pulse modulation approacélgs
much better results since the remaining oscillations arenf
low amplitude, but the problem is that the valve may wear out
severely.

REFERENCES

[1] M. Morari, “Design of resilient processing plants Il -general frame-
work for the assessment of dynamic resilienceChemical Engineering
Science 1983,38, pp. 1881-1891.

[2] S. Skogestad and |. Postlethwait®jultivariable Feedback Control:
Analysis and design Chichester, UK: John Wiley & Sons, 1996.

[3] T.J. McAvoy and R. D. Braatz, “Controllability of Procewith Large
Singular Values”. Ind. Eng. Chem. Res2003,42, pp. 6155-6165.

[4] S. Skogestad, “Simple Analytic Rules for Model Redustiand PID
Controller Tuning”. Journal of Process ContrpR003,13, pp. 291-309.

[5] J. E. Slotine and W. LiApplied Nonlinear Control New Jersey, USA:
Prentice-Hall International Editions, 1991.

[6] K. J. Astrom and T. HagglundAutomatic Tuning of PID Controllers
USA: Instrument Society of America, 1988.



