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Abstract

In this paper, a new multivariable self-tuning PID con-
troller design scheme is proposed. The proposed control
scheme has a static matriz pre-compensator in order to
reduce the interaction terms of the process transfer func-
tion matriz. The static matriz pre-compensator is de-
signed by priori information. The p X p pre-compensated
multivariate system is then controlled via p’ univariate
self-tuning PID controllers. The PID parameters are
calculated on-line based on the relationship between the
PID and generalized minimum wvariance control laws.
The proposed scheme is experimentally evaluated on a
3 x 3 temperature control system. Ezperimental results
illustrate the effectiveness of this new scheme.

1. Introduction

Self-tuning control schemes[1],(2] are useful for sys-
tems with unknown or slowly time-varying parameters
and represent a class of advanced control algorithms. On
the other hand, PID[3]-[5] control algorithms still con-
tinue to be widely used for most industrial control sys-
tems, particularly in the chemical process industry. This
is mainly because PID controllers have simple control
structures, and are simple to maintain and tune. There-
fore, it is still attractive to design discrete-time control
systems with PID control structures. Furthermore, one
may not be able to get good control performance in the
case of time-varying processes. Many studies with auto-
tuning[6]-[10] and self-tuning PID control[11]-[18] have
been proposed. However, to the best of our knowledge,
there are few studies of self-tuning PID control schemes
for multivariable systems.

The main motivation in this study is to extend the
univariate PID control scheme[18] to the multivariate
control systems. Many industrial processes are inher-
ently multivariate in nature and yet are presently con-
trolled by multiloop PID control schemes, where the in-
teraction among the loops is essentially ignored. The re-
sults of such control schemes are highly de-tuned loops
and consequently often poor regulation and control.

This paper is organized as follows. The structure of
a transfer function model to be considered in the esti-
mation and design of control system is first considered,
followed by a design scheme of the static matrix pre-
compensator. Furthermore, based on the relationship

between PID control and GMVC laws, a design scheme
of multivariable self-tuning PID controllers is proposed.
The proposed scheme is experimentally evaluated on a
3 X 3 computer-interfaced pilot-scale process.

2. Multivariable Self-Tuning PID
Controller

2.1 Mathematical model

Let 27! be the backward shift operator, then the fol-
lowing discrete-time p-input and p-output multivariable
description of ARIMAX system describes the process:

Az Ny(t) = 27" Bz Nu(t) +d+£() (1)

where u(t) and y(t) are the input and output vector
with p-elements, i.e.,

u<t>=[u1<t>,uz<t>,---,up<t>1T} @

y(t) = [yl (t)a yZ(t)’ ttty yp(t)]Ta

and x(t) denotes the output of a white Gaussian noise
vector through a disturbance transfer function vector.
A is the differencing operator defined as A :=1 — 271,
Furthermore, A (z7!) is a polynomial matrix given by

A ) =T+ A1271 4 Ap272 (3)

with the coefficient matrix By is defined as

a;1,1 @12 " Gilp
ai2,1 G322 - Gi2p
A= ] ] . . (4)
Qip1 Qip2 " Qipp
(i=1,2).

B(z71!) is the following full polynomial matrix with
elements:

Bia(z7!) Bip(z7) Bip(z7)
B(z-1) = 32,1(:z‘1) Bz,zgz—l) B2yp§z—1)
Bpa(z7') Bpa(z7') Bpp(271)

By+ Bz '+ .-+ Bpz ™, (5)



with the coefficient matrix By, is defined as

bk bri2 ccc brap
br21 br22 0 bra2p
B = . . .
bkpi bkp2 0 bkpp
’I"(k=1,2,"',m)- (6)

D is the time-delay matrix of the form:
D = diag{z7%m1, z7kma ... z7kmp}, (7)

km; denotes the minimum value of estimated time-
delays for the ith row. If the true time-delays, k;, are
known exactly in advance, it is better to set

km, = min {k;;}, (8)
J=1,--,p

where k; ; denotes the time-delay between the i-th out-
put and the j-th input signals. On the other hand,
where the information about time-delays is not avail-
able, then k,, is set to 0. While the time-delay descrip-
tion in eqn.(7) may sound restrictive, in reality it is not
because most real process have delay or interacter ma-
trices of the diagonal form, or delays can be added to
the actuators so that the delay matrix is of this diago-
nal form([20]. For the system (1), we make the following
assumptions:

[Assumptions]
[A.1] The polynomial matrix A(z7!) is stable.

[A.2] The degree of B(z~1), m is known, and the fol-
lowing relationship is satisfied:

[A.3]B(1) is assumed to be non-singular.

[A.4] Reference input w;(t) consists of piecewise con-
stant signals.

2.2 Pre-compensator

In designing multiloop controllers for multivariable
control systems, it is important to first remove or com-
pensate for interactions. The simplest pre-compensator
that can be designed is a static parameter, H is with
the form[21],[22]:

H:=B }(1)AQ1)

hii hiz2 -+ hip
hag hoo -+ hap

(10)

hp,l hp,2 hp.p

Such a pre-compensator essentially looks after the
low frequency interaction. The augmented system con-
structed by eqns.(1) and (10) can then be described as

A(z"Yy(t) = DB(z"Y)Hv(t — 1) + x(t)/A (11)

where v(t) denotes the input signal vector to the aug-
mented or pre-compensated system. In fact, the pre-
compensator could be designed as B~!(271)A(z71)
in order to decouple the system exactly. However,
this would be needlessly cumbersome for realization
purposes and require the assumption that B(z7!) is
asymptotically stable. Therefore, a simple static pre-
compensator as given by eqn.(10) is used in this paper.
This is the static approximation of B1(271)A(271).
The idea behind static decoupling is that diagonal dom-
inance is a suitably weaker requirement in comparison
with complete or strong decoupling, via dynamic pre-
compensators, in the design of controllers for multivari-
ate systems. In general, careful design of a static decou-
pler can achieve diagonal dominance. Many industrial
processes are controlled in a multi-loop manner without
any pre-compensation whatsoever.

By regarding the augmented system (11) as the ap-
proximately or almost decoupled system, the following
model can be obtained for each diagonal element:

A,;(Z_l)yi(t) =z km; Bi(z“l)vi(t - 1) + l‘,(t)/A

(i=1,2,---,p) 12

where

P
B,;(Z_l) 1= Z Bi,k(z_l)hk’i
k=1

- (19)
=bio+bi127 + -+ bimz™
and A;(z7!) is given by eqn.(3).

H in eqn.(10) can be designed when A(z~!) and
B(z7!) are known. However, it is difficult to obtain
these parameters exactly. So, in this paper, H is calcu-
lated as follows.

First, the static value of u(t) and y(t) are defined as
@ and ¥, respectively. Then, ¢ can be described as the
following equation:

7 =Gu+d, (14)
where G means the static gain matrix as
G :=A"'(1)B(1) (15)

and
d:= A"'(1)d. (16)




The following equation can be obtained by eqn.(14):

HE I

Next, p-sets of independent data @; ... %, and @ ... Yp:
are prepared in order to calculate G and d uniquely.
Then, the following relationship can be obtained:

(17)

Yo = G, (18)
where _ ~
- l:yl yp )
@ 1 1
- G d
G,= 19
[0 ... 0 1] ( (19)
0, = [ul cee Up
1 ... 1]
Therefore, G, can be derived as
G, =9, 'u,, (20)
and the pre-compensator H can be designed by
H=G"" (21)

It may be possible to get the static values #;...%,
and ¥, ...y, while controlling the controlled object.
Then, H can be adjusted in an on-line manner.

2.3 Multiloop PID controller design

Next, we consider the design of PID controllers[18]
for the augmented system given by eqn.(12). The dig-
ital PID control law to be considered in this paper is
described as

Avi(t) = kci [{ei(t) — ei(t — 1)} + le.ei(t) (22)
+€’3 {ei(t) — 2es(t — 1) + ex(t — 2)}]

where e;(t) denotes the control error signal given by

ei(t) == wi(t) — yi(t) (23)
and k.,, T7, and Tp, are the proportional gain, the reset
time and the derivative time, respectively. Furthermore,
T, denotes the sampling interval. For convenience, let
L,'(z_l) be

T Tp,

i -1 =k, (1 =
Li(z71) 4 ( tootT

1

2Tp.
) = ke, (1+ =24) 27!
k.. T, L
+ C¢I18Di z_2
(24)

then, eqn.(22) can be rewritten by

Li(z Y )yi(t) + Avi(t) — Li(z"Y)w;(t) = 0. (25)

The tuning of the control constants in PID control laws
(22) or (25), is important, since the performance of the
control system strongly depends on them. For systems
with unknown parameters and unknown time-delays,
however, it is difficult to easily find the ”optimal” PID
parameters. Therefore a self-tuning PID control al-
gorithm based on the relationship between PID con-
trol and generalized minimum variance control(GMVC)
laws, is derived below.

2.4 PID tuning

Consider the following cost function to derive a
GMVC control law:

Ji = E[¢2(t + kpm, + 1)]. (26)

¢i(t+km,+1) in eqn.(26) denotes the generalized output
of the form:

Gi(t + km; + 1) := Pi(z7)yi(t + km, + 1) + NiAv;(2)
— Ri(z~Mwi(t),

(27)
where )\; in eqn.(27) is the weighting factor with respect
to the control input, P;(27!) is the user-specified design
polynomial of the form:

P(z7Y) =1 +p,~,1z_1 +p,-,2z_2, (28)

and R;(27!) is determined based on the relationship be-
tween PID control and GMVC laws. The control input
minimizing the cost function (26) is given by the follow-
ing equation[2]:

Fi(z7Nyi(t) + {Ei(z71) Bi(z71) + A} Ay (t)
- P(Nwi(t) =0
(29)
where E;(27!) and F;(271) are obtained by solving the
following Diophantine equation:

Pi(z7Y) = AAi(z7 Y Ei(27Y) + 2~ Ekmit D Fi(271) (30)
E(z ') =14e127" + - +eik,, 27" (31)
Fi(z™Y) = fio+ finz7l + fiez™2

Next, based on the relationship between PID con-
trol and GMVC laws, a tuning method of PID param-
eters is derived. Usually the dynamics of the system to
be controlled, for example the time-delays or the time
constants, are rarely known precisely in advance. In

particular, knowledge of the delay is important. Here,
we adopt the strategy that k,,, be under estimated




i.e., initially use the upperbound estimate of the delay,
or assume that the order of B;(27!) is large enough,
in order to cope with the above problem. Therefore,
the estimates k,, and B;(z~1!), i.e., the second term
E;(271)B;(27!) in eqn.(29) includes some uncertainties.
In order to obtain a control law with a PID structure,
we consider the following equation with E;(271)B;(z™1)
replaced by the static gain E;(1)B;(1):

Fi(2™ )yi(t)+H{Ei(1) Bi(1)+A:} Avi(t)~Ri(2 " wi(t) = 0.

(32)
Here, v; is defined as
vi == Ei(1)B;i(1) + s (33)
then, eqn.(32) can be rewritten as
By 0+ au) - B Dum =0 (59
Furthermore, if the following relations are satisfied:
Ri(z™!) = Fi(z_ll)
Li(z7Y) = E_’ﬁ’i___)_ } (39)

as in eqn.(34), then eqn.(34) becomes identical to
eqn.(25). Therefore, based on eqns.(24) and (35), the
PID parameters can be calculated as follows:

. 1
“ Vi(ffi,l 122{@2)
Ty = __Jir T eli2 36
h fio+ fir+fi2 ° (36)
Tp. = — 4,2

— T,
! fin+2fi2°

Note that the parameters \; are related to only k.,. In
other words, T, and Tp, are independent of A;. Thus,
the proposed scheme has a feature such that after se-
lecting P;(z7!) in the generalized output (27), ); can
be determined or chosen independently by considering
the stability of the control system based on a priori in-
formation.

2.5 Self-tuning controller
Based on the control scheme discussed above, a mul-

tivariable self-tuning PID control is designed in this sec-
tion.

The unknown parameters included in the augmented
system (12) are estimated via the following RLS algo-
rithm:

6;(t) =0;(t — 1)

Li(t -1yt —1) (37)
9T - - Dee -
Ii(t) = —[P t-1)
_ L@t - 1)¢z(t — D)yT (¢t — 1)y (t — 1)] (38)
wz + 9] (t = DTt - D)yt - 1)

it) = Ayg, (8) =07 (¢ = 1)vhi(t—1)( = 1,2, +,p) (39)
where w is a forgetting factor WiAth limits: 0 < w < 1,
and ¢;(t) is a prediction error. 6;(t) and v;(t — 1) are
given by

0i(t) = [@i,1(8), di,2(2), biro(2), bia (8), -+, bim (D)7 (40)

'l/}i(t - 1) = [—Aygi (t - 1)5 _Ayge (t - 2),
Dvg,(t — by = 1), -+, (41)
Avg, (t = ko, —m — 1)IT.

For the purpose of improving reliability of the param-
eter estimation and once again emphasizing estimation
accuracy at lower frequencies, the following estimator
filter C(z71) is also utilized.

l1-c
1—cz?

Oz = (42)

Therefore, y,, and vg; included in (39) and (41) are
given by

You(t) 1= C(z™")ui(t) (43)
0ge(t) : = C(Yui(t).

By solving the Diophantine equation (21) based on es-
timates included in 6(t), and calculating eqns.(24) and
(27), PID parameters can be obtained.

A block diagram of the multivariable self-tuning PID
control system is shown in Fig.1.

estimator

Augmented System

v"

Pre- N

Process
Compensator

PID Controller

4

Fig. 1. Brock diagram of control system.




Thermocouple

Heater

Fig. 2. Schematic diagram of the control system.

The proposed multivariable self-tuning PID control
algorithm is then realized via the following steps.
[Multivariable Self-Tuning PID control algo-
rithm]

1. Calculate the pre-compensator H based on
eqn.(10).

2. Choose P;(z71) and ;.
3. Design the estimator filters C(271).

4. Estimate 6;(t) by using the RLS algorithm in
eqns.(37)-(41).

5. Solve the Diophantine equation (30).
6. Calculate v; based on eqn.(33).
7. Calculate PID parameters based on eqn.(27).

8. Calculate the control input vector u(t) based on
eqn.(22).

9. Update t and return to 4.
3. Experimental Results

In this section, the proposed self-tuning controller is
experimentally evaluated on a pilot-scale temperature
control system. The schematic diagram of the equip-
ment is shown in Fig.2.

This temperature control system had been made to
imitate heating barrels in the injection molding machine.
This system consists of three zone. Each zone have a
thermocouple as the sensor of temperature and a heater
as the actuator.

The control objective is to regulate the temperature
of the zone 1, y;, the zone 2, y» and the zone 3, ys,
by manipulating the control valves, ui, us and us. The
system is highly coupled.

t [step]

t [step]
Fig. 3. Control result by proposed method.

The transfer function elements of the process can be
approximated as the first-order system with time-delays.
The multivariable PI control system is then constructed
with a; 2=0 in eqn.(4). The sampling interval is set to
30[sec].

The result of using the proposed control scheme
is shown in Fig.3, where P;(z7!) and \; are set to
Pi(z7')=1-1.432"1+0.512"2 and X; = 0.1.

4. Conclusions

In this paper, a design scheme of multivariable self-
tuning PID controllers has been proposed. The main
features of the proposed control scheme are summarized
as follows.

e A practical self-tuning design strategy for mul-
tivariable systems, that is based on the classical
Nyquist array techniques, has been presented.

e In order to cope with the interaction of the sys-
tem, a static pre-compensator is designed by the
inverse of the estimated static gain matrix of the
system.




e The control algorithm has a parameter estimator
which work for the on-line tuning of the PID pa-
rameters.

e For the purpose of improving the reliability of the
parameter estimator, simple exponential type data
pre-filters are used to condition the signals prior
to estimation.

e PID parameters are calculated based on the rela-
tionship between PID control and GMVC laws.

t [step]

Fig. 4. PI parameters trajectory.
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