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Abstract

Heterogeneous catalytic chemistry is used throughout the chemical and petro-chemical industry. In 
predicting the performance of a reactor, knowing the gases and solids flow dynamics is as important as 
having a good chemical  rate expressions.  This paper gives the solution of ozone decomposition in a 
bubbling bed using the CPFD numerical scheme which is an Eulerian-Lagrangian solution method for 
fluid-solids flow.  The ozone decomposition can be described by a single stoichiometric equation and has a 
first order reaction rate. The ozone decomposition is a standard problem for chemical analysis and has 
been used to  characterize gas-solids  contact  in  fluidized beds.  The accuracy  of  predicting the ozone 
decomposition comes from correctly predicting the bed dynamics. The solution in this study is three-
dimensional and predicts the coupled motion of both solids and gas. The chemical rate equation uses 
solids  volume fraction,  but  the  numerical  method could  calculate  chemistry on  the discrete  catalyst, 
including a variation in size (surface area) if such a rate equation was available.  The numerical results 
compare well with an analytic solution of the decomposition rate, and calculated results compare well with 
the experiment by Fryer and Potter (1976).

Introduction

Ozone decomposition is a standard problem for chemical analysis. It has been used to characterize 
the gas-solids contact in a fluidized bed. The ozone decomposition can be described by

2O33O2 (1)

and the ozone rate equation is

d [O3]

dt
=−cs [O3] (2)

where [] denotes mole concentration. The rate coefficient is

cs=k S (3)

where θS is the solids volume fraction and k is a constant based on catalyst activity. The catalyst volume 
fraction in the chemical rate coefficient equation Eq. (3) does not account for the the effect of catalyst 
surface area (catalyst sites) from a particle size distribution (PSD). The solid-catalyst size distribution was 
not available, and a constant size was used in calculations. 

The chemical process is simple, and at low concentration, the reaction is essentially irreversible and 
isothermal. Calculations were made for two stagnant beds and a fluidized bed. One static bed calculation is 
in a closed vessel where the ozone decomposition reaction increases the pressure. The second static bed 
calculation is in an open vessel which allows excess volume from the ozone decomposition to exit the 
vessel and leads to a decrease in mixture density. The ozone decomposition in the static beds has a known 
analytic decomposition rate and known pressurization in a closed vessel and known density in an open 
vessel.  Because the full  set  of momentum and mass equations are  solved,  the static bed calculations 
provide a check on correctness of the predicted chemistry. The fluidized bed calculation is compared with 
measured data.

The calculations are  made using the CPFD numerical  scheme.  The CPFD solves the fluid and 



particle momentum, mass and energy.  The particle momentum description is based on the multi-phase 
particle in cell (MP-PIC) method and the fluid phase is solution of the three dimensional Navier-Stokes 
equation. The calculations are made with the BarracudaTM software.

CPFD governing equations

The CPFD method solves the fluid and particle momentum equations in three dimensions The fluid 
is described by the Navier-Stokes equation with strong coupling with the discrete particles. The particle 
momentum follows  the  particle-in-cell  (MP-PIC)  numerical  description  from P.  O'Rourke  (Andrews, 
1996; Snider,  1998; Snider,  2001) which is a Lagrangian description of particle motion described by 
ordinary differential equations with coupling with the fluid. The CPFD solution as applied in Arena-flow® 

and Barracuda-CPFD® is aimed at solving commercial  problems, which are generally physically large 
systems. In the CPFD scheme, a numerical-particle is defined where particles are grouped with the same 
properties (species, size, density, etc.). The numerical-particle is a numerical approximation similar to the 
numerical  control volume where a spatial  region has a single property for the fluid. Using numerical 
particles, large commercial  systems containing billions of particles can be analyzed using millions of 
numerical-particles.

The volume average two-phase incompressible continuity equation for the fluid with no interphase 
mass transfer is 

∂ f

∂ t
∇⋅ f u f =0 , (4)

where  uf is  the  fluid  velocity  and  θf is  the  fluid  volume  fraction.  The  volume  average  two-phase 
incompressible momentum equation for the fluid is

∂  f u f 
∂ t

∇⋅ f u f u f =
−1
 f

∇ p−
1
 f

F f g
1
 f

∇⋅ , (5)

where  ρf is  fluid  density,  p is  fluid  pressure,  τ is  the  macroscopic  fluid  stress  tensor,  and  g is  the 
gravitational acceleration. F is the rate of momentum exchange per volume between the fluid and particles 
phases. The fluid phase is compressible or incompressible (incompressible equations shown), and fluid 
and particle phases are isothermal. 

The particle acceleration is 

d u
dt

=D p u f−u p −
1
p

∇ p g− 1
pp

∇ p (6)

where up is the particle velocity, ρp is the particle density, g is gravity and τp is the particle normal stress. 
The terms represent acceleration due to aerodynamic drag, pressure gradient, gravity and gradient in the 
interparticle normal stress, τp. 

Particle properties are  mapped to  and from the Eulerian grid.  The interpolation operator  is  the 
product of interpolation operators in the three orthogonal directions. For a particle located at  xp, where 
xp=(xp,yp,zp), the x-directional component of the interpolation operator to grid cell  i, is an even function, 
independent of the y and z coordinates, and has the properties.

S i
x
 x p=

0 x i−1≥x p≥x i1

1 x p=x i
(7)



The  x and  y interpolation operators have a similar form. The particle volume fraction at  cell  ξ from 
mapping particle volume to the grid is

 p=
1


∑


N p

 p n p S p  (8)

where Ωξ is a grid volume, Ωp is particle volume, np is the number of particles in a numerical particle, and 
the summation is over all numerical  particles  Np. From conservation of volume, the sum of fluid and 
particle volume fractions equals unity, θp+θf = 1.

The implicit numerical integration of the particle velocity equation is

u p
n1

=

u p
n
 t [ D pu f , p

n1
−

1
p

∇ p p
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g ]
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(9)

where u f , p
n1 is  the  interpolated  fluid  velocity  at  the  particle  location, ∇ p p

n1 is  the  interpolated 

pressure gradient at the particle location, ∇p
n1 is the interpolated particle stress gradient at the particle 

location,  Dp is the drag coefficient at a particle location. Particles are grouped into numerical-particles 
each containing  np particles with identical  properties located at  position,  xp.  The numerical  new-time 
particle location is

x p
n1

=x p
n
 t u p

n1 (10)

The interphase drag coefficient is 

D C
rp d

g

p

f p
=

−3
8

ρ
ρ

u u
, (11)

and the Wun and Yu (1966)drag correlation is used

Re1000 Cd=
24
Re

10.15Re0.687  f
−2.65

Re≥1000 Cd=0.44 f
−2.65

(12

Re=
2 f ∣u f−u p∣r

 f

, (13)

where µf  is the gas viscosity and the particle radius is

r= 3p

4 
1 /3

(14

Particle-to-particle collisions are modeled by the particle normal stress. The particle stress is derived 
from the particle volume fraction which is in turn calculated from particle volume mapped to the grid. The 
particle normal stress model used here is (Snider, 2001) 

=
P s p



max [ CP−p  , 1− p ]
, (15)

where ε is a small number on the order of 10-7 to remove the singularity. The close-pack limit is somewhat 



arbitrary and depends on the size, shape and ordering of the particles. Therefore the solution method 
allows the particle volume fraction, at times, to slightly exceed close-pack which is physically possible 
considering that shifting or rearranging of granular materials may occur. The particle normal stress is 
mapped  and  applied  to  discrete  particles.  Because  particles  have  subgrid  (no  grid)  behavior,  the 
application of the normal stress gradient to a discrete particle is modeled and accounts for the particle 
properties and whether the particle is moving with or against the stress gradient (Snider, 2001). 

The conservation equations are approximated and solved by finite volumes with staggered scalar and 
momentum nodes.  The  fluid  momentum equation  implicitly  couples  fluids  and particles  through the 
interphase momentum transfer. The  interphase momentum transfer at momentum cell ξ is

F 
n1

=
1


∑
p

S [ D p u f , pn1
−u p

n1 − 1
p

∇ p p
n1] n p mp , (16)

Particle drag and properties are interpolated to the grid. If a top hat interpolation is used, the fluid velocity 
at particle position xp is either zero or the node velocity. If a trilinear or other interpolation is used, the 
fluid velocity at particle position xp includes the node velocities in support of the interpolation. 

Mass continuity is from the material motion of particles. The mixture fluid mass is calculated from 
volume continuity,  θf=1-  θp  A SIMPLE solution scheme with a coupled solids momentum is used to 
adjust  pressure,  density  and  fluid  velocity  to  satisfy  fluid  continuity.  Velocity,  pressure  and  density 
correction  dependence,  estimated  from the  momentum equation  are  entered  into  the  fluid  continuity 
equation, giving a semi-implicit coupling of mass and momentum in a pressure correction equation. The 
pressure equation is solved and fluid pressure, density and velocities are corrected to satisfy continuity.

The gas mixture properties are from the mass fractions of the individual gas species properties. An 
ideal gas equation of state is used for the pressure-density dependency. Gas species transport is calculated 
from the bulk mixture flow. The Livermore National Laboratory CVODE ordinary differential equation 
(ODE) solver (Hindermarsh and Serban, 2006), is used to calculate the chemistry rate. For the simple 
ozone decomposition in this work, the CVODE solver , which is for sparse/stiff ODE equation sets, is 
over-kill.

Analytic solution for uniform packed bed

If  a  fluidized  bed  has  an ideal  uniform solid  distribution,  there  is  an  analytic  solution  for  the 
decomposition of ozone. The one dimensional transport of ozone through a bed is described by

mix f u
dY O3
dz

= f mix
dY O3
dt

(17)

where ρmix is the gas mixture density, u is the fluid velocity, z is the axial distance, YO3 is the mass fraction 
of O3 and θf  is the fluid volume fraction. The first order reaction, given by Eq. (2), is substituted into Eq. 
(17) giving the rate of production of ozone 

mixu
dY O3
dz

=−mix k pY O3 (18)

The mass fraction is

Y O3=Y O3
o e

−
k  p
u
z (19)

where Yo is the initial value (at t=0). The superficial velocity is U=θf   u, which is substituted into Eq (18) 



giving

Y O3=Y O3
o e

−
k  p f
U

z (20)

Figure 3 shows that the Barracuda calculation for a uniform bed of solids compares well to the analytic 
solution Eq. (20). Because the gas velocity was well above the minimum fluidization velocity, the ideal 
bed would not  be stationary and therefore,  the solids were forced to be stationary.  While this is not 
physically correct for solid dynamics, it gives a constant uniform distribution of solids from which the 
chemistry could be tested.

Figure 1. Barracuda calculation compared with analytic solution. 
Analytic solution uses k=1.57 s-1 and k=7.75 s-1, θp=0.45, and x=11.5 cm.

Fluidized bed ozone decomposition

The ozone decomposition is  calculated in a fluidized bed.  The experiment  by Fryer  and Potter 
(1976) is modeled. The experiment vessel was 22.9 cm diameter and 200 cm tall. The packed bed contains 
solid catalyst of silica sand impregnated with Fe2O3 .The bed is fluidized with dry air with O3 added. The 
parameters are listed in Table 2. All calculations were run for the full three-dimensional bed.

Figure  2 shows the solids in the fluidized bed colored by volume fraction. The volume fraction 
spatial parameter is mapped to the discrete particle locations for visualization. The bed is bubbling, and 
like the experiment, the inner details of the bed are not distinct. Figure 3 shows the solid volume fraction 
by two other graphic methods in a cut section of the bed. Figure 3a shows the volume fraction of solids on 
the Eulerian grid, which is similar to calculated data using an Eulerian representation of solids. The light 
areas are void structures or “bubbles”, and the dark areas are more dense packed regions of solids. Figure 
3b shows the solid volume fraction greater than 0.3. The holes are the void structures of gas rising through 
the bed.

Figure 4 shows the mass fraction of O3 next to the solids in the fluidized bed. The view is with the 
front half of the bed removed. The ozone enters the bed at 0.1 mass fraction and starts decomposing to 
oxygen in the presence of the catalyst. At the bottom of the bed, the catalyst is relatively uniformly mixed 
compared to higher in the bed where multiple “bubbles” have formed. This uniform catalyst-gas mixture 
gives a near uniform O3 decomposition for the first few centimeters. Further up in the bed, plumes of O3 

rise in the bed in gas voids (“bubbles”) while O3 in denser packed regions of catalyst  decompose to 
oxygen. Above the bed, O3 which did not decompose to O2 drifts in the bulk flow and flows out of the bed. 



The prediction of the ozone decomposition in a fluidized bed requires accurate prediction of the bed 
dynamics. In calculating fluidized beds, it is common to adjust the drag coefficient based on a measured 
fluidization velocity. This allows calculations which use a single particle size to adjust to a best-fit particle 
size for the calculation. This adjustment also allows a correlation to better represent a particular system. In 
this  study,  there  were no adjustments  in  calculation parameters  to  fit  or  tune the calculation for  the 
problem. The performance of the drag model is deduced from the predicted pressure, as the inlet velocity 
is ramped with time.  Fryer and Potter (1976) reported the measured minimum fluidization velocity (Umf) 
was 1.7 cm/s and Fig. 5 shows from the calculated Umf is approximately 1.6 cm/s. A solid size distribution 
was  not  available  for  this  study,  and possible  inaccuracies  in  calculation parameters  with respect  to 
experimental conditions, including inaccuracy in the drag correlation are possible sources for the small 
discrepancy  between  measured  and  calculated  Umf.  From  the  relatively  good  comparison  between 
measured  and  calculated  minimum fluidization  velocity,  the  standard  Win  and  Yu  (1966)  is  judged 
sufficient without adjustment.

Table 2. Simulation conditions for a fluidized bed
Vessel diameter 22.9 cm

Vessel height 30 cm

Top pressure boundary for open vessel 101 kPa

Temperature 300 K

Inlet mixture N2 0.702 mass fraction

Inlet mixture O2 0.198 mass fraction

Inlet mixture O3 0.1 mass fraction

Mixture flow rate ranges from 2 to14 cm/s

Solid-catalyst Fe2O3 with a silica base

Solid-catalyst density 2655 kg/m3

Solid-catalyst radius 60 μm [1]

Solid-catalyst sphericity 1

Reaction rate constant, k 0.33 to 1.57 s-1  [2]

Initial solid-catalyst volume fraction 0.6
1. No information was given on the particle size distribution
2. Units from reaction rate equation, (s-1).

The fluidized bed calculations were run sufficiently long at a fixed inlet flow rate to get a quasi 
steady rate of ozone decomposition. Figure 6 shows the ozone at the top of the vessel for an inlet flow rate 
of 7 cm/s and a chemical rate coefficient k= 1.57 s-1. At 24 s, the inlet velocity is increased to 11 cm/s and 
the calculation continues to run beyond the time period shown in the figure. Figure 7 shows the calculated 
and measured ozone decomposition as a function of inlet flow rate. The comparison is excellent. As the 
inlet flow rate increases, less ozone decomposes to oxygen. In the bubbling fluidized bed, ozone moving 
in  bubbles  bypasses  solid  catalyst  contact.  The  prediction  from the  analytic  solution  for  a  uniform, 
stationary packed bed also compares well with the measured ozone decomposition. This is partly due to 
choosing the solids volume fraction for the analytic solution from the CPFD calculation. In general, an a 
priori effective solids volume fraction can not be chosen for a fluidized bed.

Figures 8 and 9 show the calculated ozone decomposition for k=0886 s-1 and k=0.33 s-1, respectively. 
The comparison between Barracuda and experiment is also good. The calculation is shifted a little above 
or  a  little  below  the  measured  decomposition  data.  The  variation  could  be  from  slightly  different 
calculation  parameters  from  those  used  in  the  experiments.  There  was  a  range  of  measured  rate 
coefficients that where combined to get the average coefficient which is used in the Barracuda calculation. 
For the average k=7.75, Fryer and Potter reported rate constants from 7.05 to 8.05. The reaction rate from 



this range of measured coefficients can produce a variation in decomposition of ozone from -105% to 26% 
relative to the average reaction constant (analysis based on analytic solution). The ozone enters the bed at 
1.5 cm from the bottom, while Barracuda calculations have ozone entering at the bottom. As noted by 
Fryer and Potter (1976) this gives an effectively shorter ozone decomposition zone. A 11.5 cm deep bed 
has a 13% smaller effective reaction zone. For a 24 cm deep bed, the effective reaction zone is 6% smaller. 
Again, the the analytic solution for a uniform packed bed compares well with the measured data.

Figure 2. Calculated solids distribution. Discrete solids are shown colored by 
volume fraction mapped from the grid to particle locations.

a b

Figure 3. Calculated solids field, colored by volume fraction. Uinlet=11 cm/s, static bed 
height is 11.5 cm and k=1.57 s-1. Figure b shows volume fraction greater than 0.3.



Figure 4. Calculated O3 mass fraction and catalyst-solids colored by volume fraction. 
Uinlet=11 cm/s, static bed height is 11.5 cm and k=1.57 s-1. 

Figure 5. Calculated transient pressure and inlet gas-mixture velocity leading to minimum 
fluidization. Static bed height of 11.5 cm and reaction rate coefficient k=1.57 s-1



Figure 6. Calculated transient O3 mass fraction at inlet mixture velocity of 
7 cm/s, static bed height of 11.5 cm and reaction rate coefficient k=1.57 s-1 

Figure 7. Measured and calculated O3 normalized mass fraction as function 
of inlet velocity. Static bed height is 11.5 cm and chemical rate constant 1.57 s-1. 

Analytic solution uses k=1.57 s-1, ρf,=1.2 kg/m3 θp=0.45, and x=11.5 cm.



Figure 8. Measured and calculated O3 normalized mass fraction as function 
of inlet velocity. Static bed height is 24 cm and chemical rate constant 0.86 s-1. 

Analytic solution uses k=0.86 s-1, ρf,=1.2 kg/m3 θp=0.45, and x=24 cm.

Figure 9. Measured and calculated O3 normalized mass fraction as function 
of inlet velocity. Static bed height is 23.1 cm and chemical rate constant 0.33 s-1. 

Analytic solution uses k=0.33 s-1, ρf,=1.2 kg/m3 θp=0.45, and x=23.1 cm.



Concluding remarks

The implicit solution of the ozone decomposition and explicit calculation of oxygen generation was 
calculated well by the CPFD numerical method. The fluidized bed calculation predicted the “usual” void 
structures or “bubbles”; however, there were instantaneous complex solids and gas flow patterns. The 
ozone chemistry is a simple and well behaved  reaction rate. The correct calculation of the chemistry 
depends on correct calculation of the bed motion. The bubbles transport gas with little gas-catalyst contact 
which reduces the chemistry yield. In this study, the complete set of fluid and solid mass and momentum 
equations, and the chemistry equations were solved. All calculations were made in three dimensions, and 
no parameters were tuned or adjusted to fit the experiment. 

The analytic ozone decomposition solution also compared well to the experimental data. The good 
agreement is not surprising considering that the catalyst concentration in the analytic solution was from the 
CPFD bubbling bed calculation. In general, the bed dynamics and solids concentration are unknown, and 
if the bed has streamers or various degrees of mixing, a suitable average solids concentration cannot be 
simply chosen.
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