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Abstract 

A novel model reduction-based deterministic optimization algorithm for large scale systems 
modeled by black-box simulators is presented. The proposed algorithm relies solely on the 
computation of low-dimensional Jacobian and reduced Hessian matrices, which correspond to 
the dominant modes of the system at hand. A basis for the dominant subspace of the system 
is computed using subspace iterations and is exploited for the calculation of the reduced 
Jacobian matrices through a small number of numerical directional perturbations. The reduced 
Hessian matrices are calculated from a 2-step projection scheme, firstly onto the dominant 
subspace of the system and secondly onto the subspace of the decision variables. To illustrate 
the efficiency of the proposed algorithm, we have applied it to the cases of the optimization of 
a tubular reactor, as well as a Counterflow Jet Reactor which is modeled using MPSalsa.  
 
Introduction 

The design of all industrial systems involves the concept of optimization. Many, if not most, 
of those systems are complex and are typically described accurately by a set of partial 
differential equations (PDEs). The latter are discretized over a mesh for the numerical 
simulation of the system at hand, which leads to a large-scale system. Steady state simulators 
employ iterative methods for the solution of those systems. Optimization of those processes 
can be based on deterministic [1], or stochastic/meta-heuristic [2] methods. Stochastic 
methods perform a large number of function evaluations, invoking the system simulator. Thus 
they are more appropriate for moderate-sized problems [2]. On the other hand, the application 
of deterministic optimization methods to large-scale systems with constraints is often 
problematic or even unrealistic, having increased requirements regarding computing power 
and memory size. The task is deemed even more tedious in the case of black-box solvers 
(commercial simulators or legacy codes), since the system equations are not available to the 
user. 

 
In recent years we have developed a model reduction-based framework for gradient-based 

steady-state [3] and dynamic [4] optimization that employs input/output dynamic simulators. 
Here we extend this work by presenting a novel framework for steady-state optimization which 
uses black-box steady-state simulators based on solvers employing iterative linear algebra 
methods. We demonstrate the behavior of the algorithm by applying it for the optimization of a 
tubular reactor [5] and its performance and efficiency in handling large-scale input/output 
simulators through another illustrative example: the optimization of a Counter-Flow Jet Reactor 
[6] which is simulated using the state-of-the-art massively parallel finite element code 
MPSALSA developed at SANDIA National Laboratories [7]. 
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The proposed algorithm 
The optimization problem considered here is: 

 min ( )f x    s.t. =( ) 0G x , ≤ ≤L Ux x x  (1) 
where +ℜ →ℜN dof  is the objective function and +∈ℜN dofx  is the joint vector of the dependent 
∈ℜNu  and independent variables ∈ℜdofz : 
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Feasible states are calculated by solving the equation: 

 =( ) 0G x  (3) 
using the input/output, black-box simulator.  
 

If the dimension of x is small to medium, the optimization problem can be efficiently 
handled by the Sequential Quadratic Programming method (SQP). The SQP is equivalent to 
solving the Kuhn-Karush-Tucker optimality conditions using the Newton-Raphson method. In 
every step of this method, a QP subproblem is solved: 
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Where + × +∈ℜn dof n dofB is the Hessian of the system and d is the search direction ( )+∈ℜn dofd . 

 
For large scale systems that include a small number of degrees of freedom, the reduced 

Hessian methods are more appropriate [8]. They consider decomposing the space of the 
search direction in two subspaces, one being the tangent space of the constraints ∇ ( )G x  and 
the other being its complement. Let Z and Y non-orthonormal bases for the two subspaces 
correspondingly:  
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This way, the search direction can be decomposed as follows: 
 = +Y ZY Zd p p  (6) 
 
Following this formulation, the QP subproblem defined in Eq. 4 can be transformed as follows: 
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The matrix =T
RZ BZ B , ×∈ℜdof dof

RB  s the reduced Hessian and can be calculated numerically, 
generally through a BFGS update procedure. The Lagrange multipliers needed for this 
calculation can be calculated from: 

 λ+ + ∇ = − ∇T T T T
Y ZY BY Y BY Y Y fp p G  (8) 

Note here that the term py is zero if feasible points (steady-states) are calculated at each 
iteration [8].  
 



The calculation and inversion of the Jacobian for the computation of the basis Z as defined 
by Eq. 5 is expensive for large problems. Especially for the case of black-box simulators, the 
Jacobian may not be available to the user, or even not calculated if the solver employs linear 
algebra procedures. To tackle this problem, we consider using a reduced Jacobian rather than 
the full one.  
 

Let P be the invariant subspace of the Jacobian belonging to the m right-most eigenvalues. 
Those are the dominant eigenmodes of the system at hand which govern its behavior. In many 
engineering problems m << n. This subspace can be efficiently identified through its basis 

×∈ℜˆ n mZ , using subspace iterations. Here we used the subroutine EB22, part of the HSL 
library [9]. The Jacobian itself is not explicitly provided. Only products of the Jacobian with 
given vectors are needed, which are calculated using numerical directional perturbations on 
the constrains. The reduced Jacobian, ×∈ℜm mH , is a projection of the original one onto P: 
 = ˆ ˆT

uZ ZH G  (9) 
The dominant subspace of the system can be easily extended to include the independent 
variables. The basis for the new subspace is + × +∈ℜ( ) ( )ˆ N dof m dof

extZ : 
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An approximation of a basis for the subspace of the independent variables, Zr, can be 

constructed using the reduced Jacobian, H: 
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Hence, a basis for the subspace that stems from the 2-step projection scheme is: 
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Using this base, the reduced Hessian of the Lagrangian, ×∈ℜdof dofB , can be calculated 

with a few numerical directional perturbations: 
 ( )= =* *ˆ ˆ ˆT T T

R r ext ext rZ Z Z Z BZ ZB B    (13) 

The Lagrange multipliers, φ , needed for this calculation are reduced and are projections of the 
original ones onto the dominant subspace: φ λ= TZ . Those are calculated from Eq. 14: 
 φ = − ∇ˆT TZ Y fH  (14) 
 

It is straightforward to show that the QP subproblem of Eq. 7 becomes: 
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The proposed algorithm is depicted in Figure 1. 
 

 



 
Figure 1: The proposed algorithm. 
 
Case Study I: Optimization of a tubular reactor with 3 independent variable 

To illustrate the behaviour of the proposed algorithm, we have chosen the case of the 
optimization of a tubular reactor with axial dispersion, where an elementary first order 
irreversible exothermic reaction takes place (A → B), as it is known to exhibit a rich parametric 
behaviour.  
 

 
Figure 2: Schematic of a the tubular reactor, with 3 cooling zones 
 

The model of the tubular reactor consists of two Partial Differential Equations, which for 
steady state become [5]:  
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Here x1 and x2 are the dimensionless concentrations and temperatures and 2w
x  is the 

dimensionless wall temperature and y the dimensionless longitudinal coordinate. We consider 
three cooling zones on the jacket of the reactor, each one of which has a temperature that can 
be controlled independently. In this case, the dimensionless temperature at the jacket of the 
reactor is given by Eq. (18) 
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A → B 



All the parameters are described in [5]. The boundary conditions chosen for this case are: 

 ∂ ∂
− = − = =

∂ ∂
1 2

1 1 2 20, 0 at 0Pe Pe y
y y
x xx x ,    ∂ ∂

= = =
∂ ∂
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The values chosen for the rest of the parameters are Le = 1.0, Pe1 = Pe2 = 5.0, γ = 20.0, β 
= 1.50, C = 12.0. The Finite Difference (FD) method was used for the discretization of the 
equations at hand and a number of nodes of 250 was chosen, leading to 500 algebraic 
equations.  

 
The objective is to maximize the dimensionless concentration, x1, at the output of the 

reactor with respect to the values of the dimensionless temperatures of the 3 cooling zones 
and subject to Eqs. (16), (17) and (19) being satisfied. 

 
The termination criterion for the algorithm was −≤* 610zZ p  and the size of the dominant 
subspace chosen was m = 10. The lower bounds for all variables were 0, the upper bounds 
were 1 for  x1, 8 for x2 and 4 for 2w

x .  The simulator of the tubular reactor was treated as a 
black-box simulator and all Jacobians and Hessians were calculated by employing numerical 
directional perturbations. Convergence was achieved in 18 iterations and the optimal point 
found is x2w,1 = 2.4826, x2w,2 = 0.52539, x2w,3 = 4.0000. For those values of the 
independent variable, a yield of 99.868% is achieved. In Fig. 3 the concentration and 
temperature profiles at the optimum for the reactor and for the cooling zones are presented.  

 

  
Figure 3: Solution profiles at the optimum point for dimensionless concentration (a) and 
dimensionless temperature (b) both for the reactor and for the 3 cooling zones. 

 
Case Study II: Optimization of a Counter Flow Jet Reactor simulated using MPSalsa 

To illustrate the efficiency of the proposed algorithm in handling large scale optimization 
problems using input/output simulators, we have applied it for the optimization of a Counter 
Flow Jet Reactor used for the decomposition studies of tertiary butyl arsine (TBA). The model 
of the reactor was setup using MPSalsa [7], which is state-of-the-art massively parallel CFD 
software, developed at SANDIA national laboratories. It implements the Finite Element 
Method, employing unstructured meshes and inexact Newton methods with iterative linear 
solvers. In this formulation, MPSalsa was used by our in-house developed optimization code 
as a black box.  
 

A schematic of the reactor, as well as the formulation of the model and the pathways for 
the decomposition of TBA is presented in Fig. 4. The model considered is a 2D symmetric one. 
The momentum equation is: 



 ρ τ ρ∂
= ⋅∇ −∇ ⋅ −
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U U U g e
t

 (20) 

where U is the velocity vector, ρ is the mixture density, which is a function of temperature and 
composition, g is the gravity vector and τ is the stress tensor, which for a Newtonian fluid can 
be calculated from Eq. (21): 

 τ μ μ= − − ∇ ⋅ + ∇ +∇
2 ( ) ( )
3

TpI U I U U  (21) 

where p is the operating pressure, μ is the mixture viscosity and I is the unitary tensor. The 
total mass equation is 

 ρ ρ∂
= ∇ ⋅

∂
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t
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The energy balance is: 

 ρ κ∂
= ⋅∇ −∇ ⋅ ∇

∂
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where T is the temperature,  Cp is the mixture heat capacity and κ is the thermal conductivity. 
The mass conservation equation for species i, i = 1, …, Nc– 1, Nc being the number of 
components of the mixture. 
 

The model of the reactor consists of 19040 dependent variables (velocities, temperatures, 
pressures and concentrations for each point of the mesh) and 1 degree of freedom: the 
velocity of the upper stream.  
 

The objective in this case is to maximize the production of AsH, thus maximizing the 
decomposition of TBA, while minimizing the production of the highly toxic AsH3. 

 

 
Figure 4: Schematic of the Counter Flow Jet Reactor (a) and formulation of the model (b). 

 
The size of the dominant subspace chosen was 12. Convergence was achieved in 4 

iterations and the optimal velocity found was 1.348cm/s, which results to a yield of 78.85%. 
Fig. 5 shows the temperature, velocity, pressure and concentration profiles at the optimum. 



      

      

   
Figure 5: Schematic Temperature (a), pressure (b), TBA mass fraction (c), AsH mass fraction 
(d), and velocity (e and f) of the Counter reactor at the optimum point. 
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