
Detection and Control of Invading Species in Autocatalytic
Networks

Sukanya Balasubramanian,Fouad Teymour,Ali Cinar

Department of Chemical and Biological Engineering,
Illinois institute of Technology,Chicago,IL-60616,USA
Email: [balasuk,teymour,cinar] @iit.edu

1 Introduction

The autocatalytic paradigm is gaining increasing popularity for its diverse range of appli-
cation in population biology concepts, DNA replication and RNA polymerization studies.
When autocatalytic species are populated in a continuous stirred tank reactor (CSTR)
environment, they display rich static and dynamic phenomena. In the natural setting,
most of the living species exhibit features of survival, coexistence and different degrees of
interaction with other species. Birol and Teymour (1) showed that competition of multiple
species populating in a CSTR leads to survival of one of the populations. Chaivorapoj
(2; 3) extended the idea by considering a single CSTR hosting a robust species, perturbed
by a disturbance of a non-robust or invading species in the inflow. When the invading
species gets a foothold in the system, concentration of the host species decreases consid-
erably. A feedback control design was implemented to eliminate the invading species and
restore original concentration of host species. For simple reactor configurations, bifurca-
tion analysis serves as a potential tool to provide insight into species behavior. As the
number of reactors increases, controller tuning using bifurcation techniques fail owing to a
geometric increase in steady states. The control problem is all the more complex because
each reactor contains an inlet, exit stream and interconnections with its neighbors.

In this paper, a hierarchical agent based system is implemented for detection and elimina-
tion of an invading species from a network of CSTRs. An interconnected grid network of 25
reactors is designed to produce a host species. At some time instant, a pulse disturbance
of invading species enters a specific location in the network. The "poison" spreads in the

network, thereby causing deleterious effects to the system behavior. Agent based systems
are a good option for use with large scale, distributed systems (4). Multi-agent systems
exhibit intelligence through collective behavior of agents with simple functionalities (5; 6).
In order to device detection and control strategies, the task of a subject matter expert is
to perform a large number of simulations with pre-selected random values for parameters
to collect information about process behavior. The process behavior is evaluated for con-
ditions under normal operation and invasion. Depending on the magnitude of invasion,
growth and death rates of the invading species, a variety of process behaviors evolve. A
knowledge engineer characterizes the process behavior and stores the information in a
knowledge base as rules. The knowledge structure is built using an expert system tool
called "Knowledge Builder", where a Knowledge Base (KB) is configured and built using
the tool’s graphical user interface. Given a current state of the process, an agent invokes
the expert system, which has the ability to make a decision on how to react, based on
its configured knowledge. The output from the knowledge base in the form of actuator
information is relayed to the system.

2 Mathematical Model

A network of I inter connected CSTRs (figure 1) is modeled by specifying material balances
for each reactor i (i = 1...N). The reactors in the network are designed such that the
volume ratio of the reactors on the outer edge to reactors in the core is 1:3. The design is
robust to disturbances since the smaller reactors shield the inner reactors, where the bulk
of the product is being produced. In order to ensure long term survival of the host species,
small concentrations are always present in the feed. The cubic autocatalytic reaction for
N host species and M invading species is

R + 2Pn → 3Pn

Pn → DP

R + 2Qm → 3Qm

Qm → DQ

where R is the resource, Pn is the nth host species, Qm is mth invading species and
DP (Q) are the inert (dead) species. The growth rates and death rates define the strength

of invading species. The rate of change of resource, host species and invading species in
reactor i can be written as

Vi
dRi

dt
= F0R0 − Fout,iRi + G(R′ −Ri)−

∑
n

krpRiP
2
n,i

Vi
dPn,i

dt
= F0P0 − Fout,iPi + G(P ′ − Pn,i)− krpRiP

2
n,i − dAbpAbiPn,i

Vi
dPm,i

dt
= F0Q0 − Fout,iQi + G(Q′ −Qm,i)− krqRiQ

2
m,i − dAbqAbiQn,i

Vi
dAbi

dt
= F0Ab0 − Fout,iAbi + G(Ab′ − Abi)−

∑
n

dAbpPn,i −
∑
m

dAbqQm,i

where R0 is the resource concentration in feed, P0 is the host species concentration in
feed, Q0 is the temporary invasion disturbance in reactor i, Ri is resource concentration
in reactor i, Pn,i is nth host species concentration in reactor i, Qm,i is the mth invad-
ing species concentration in reactor i, F0 is the inlet flow rate, Fout is exit flow rate, G

matrix defines the inter connection strength with neighboring reactors. Abi is the "an-
tibiotic" concentration required to kill the invading species in reactor i. The presence of
the antibiotic also leads to death of some of the desired species.

Fig. 1. (a) Network of interconnected reactors (b) Detail view of a reactor with inlet, outlet and interconnections.

3 Process Behavior

Detection and control strategies for a network poisoned by an external source cannot
be designed from intuitive knowledge. Since the concentration of the invading species is

an immeasurable quantity, a detection scheme should be designed based on diminishing
resource and product species concentrations. The control challenge will be to choose
among different control alternatives depending on the extent of invasion in the network. In
order to device these strategies, it is necessary to collect information about the behavior of
the system under invasion and non-invasion conditions offline. The information contribute
to building heuristic knowledge. As a knowledge building exercise, a series of open loop
dynamic case studies are carried out for various operating parameters to account for
transient and steady state characteristics.

Normal Operation. ’Normal Operation’ refers to the network behavior when only a host
species populates in the system for different parameter values. In each run, the network
parameters, feed flow rates, interaction flow rates and initial resource concentrations are
chosen in the range F0(0.15−1), g(0−3) and R0(0.8−3) respectively. A CVODE solver
(7) is used to compute the time variation of resource and host species concentration states.
A large number of such dynamic simulations are carried out to explore the boundaries of
network behavior. The dynamic data organize themselves into a manifold, which relates
the consumption of resource to production of host species (figure 2). The behavior for
large values R,P correspond to large values of inlet resource concentration. In the ensuing
sections we will focus on a fixed R0 = 1 units. The steady states corresponding to lower
values of R and P values concentrate on a continuous line with negative slope while the
transient data appear as scatter points. A direct least squares algorithm (8) is used to
fit an approximate ellipse around the cluster data. Since the dynamics are computed for
random operating conditions, all the reactors produce the same control ellipse. For data
points within the control ellipse, the gradient in concentration for host species and resource
is often negative. A Matlab implementation of the ellipse-fitting algorithm proposed by
Fitzgibon, results in an ellipse shown in figure 2.

Invasion. An invading species in the form of a concentration pulse disturbance in the
feed is introduced at a specific location in the network. The invasion spreads to other
reactors in the network because of inter connections with its neighbors. After the pulse
disturbance is removed, the undesirable species can disappear from the environment,
coexist with the host species, flush out the host species or propagate through the network
as a disturbance. The extent to which the network is affected depends on the strength
of invading species. A "strong invading species", characterized by large growth rates
compared to the host species, gains a foothold in the system even after the disturbance
is removed. Figure 3 illustrates the spectrum of network behavior under the effect of
an strong invasion disturbance introduced in reactor 1. The initial conditions and final

Fig. 2. Normal Operation behavior for operating parameters in the range F0(0.15− 1), g(0− 3) and R0(0.8− 3)

conditions for dynamics are represented by gray clusters and the transients are indicated
by black dots. A pulse disturbance is introduced at t = (150 − 200) time units with
a magnitude of Q0 = 1 units and strength (krq, dq) = (24.576, 0.3840) units . The
initial conditions for dynamics are chosen to be normal operating steady states arising
from random configurations of feed flow rates. The plots are constructed on a R − P
domain. Since Q is an immeasurable quantity, the growth and death of the invading
species with measured in terms of consumption of resource and diminishing host species.
In the invading reactor and its neighbors, Q gains a foothold in the system very quickly,
whereas the distant reactors hit invasion after a delay. Figure 4 shows the response of
the network to a "moderate invading species" with strength (krq, dq) = (10.0, 0.3840)
introduced in reactor 1. The invasion responses (gray dots) are projected over the normal
operating data (black dots). At the end of the simulation, the possible invasion responses
are: the invading reactor may flush out the host species permanently or temporarily; the
invading reactor neighbors hit invasion or contain traces of Q; in the distant reactors, the
invasion propagates as a disturbance. A weak invading species with strength (krq, dq) =
(2.0, 0.3840) stays within the normal operation thresholds.

Characterizing transients One striking observation from figure 4 is the invasion data
deviate from normal operating regions. The presence of an invading species causes a
drastic decrease in resource concentration and indirectly affects the production of the
host species. The phenomenon is a strong indication of invasion and can be interpreted
quantitatively as the occurrence of a positive concentration gradient. Starting from the
normal operating steady states (continuous line), the large amount of network behavior
data can be distilled into follow categories - the system immediately goes to an invasion

Fig. 3. Open loop responses when the network is attacked by a strong invading species.

Fig. 4. Open loop responses under moderate invasion

steady state (figure 5a), heads to invasion state after a delay (figure 5b), instantly heads
in invasion direction but loops back to its original steady state (figure 5c), loops back to

its original state with a delay term (figure 5d) or settles down at coexistence steady state
(figure 5e). The gradient sign changes are reflected in the figure.

Fig. 5. Transients during invasion (a) Immediate invasion, dpdr(+ve) ,(b) Invasion after delay dpdr(−ve, +ve)
, (c) Immediate Looping dpdr(+ve,−ve) (d) Looping after delay dpdr(−ve, +ve,−ve) (e) Disturbance propa-
gation, (f) Coexistence steady state

4 Knowledge Representation

Knowledge from the process must be translated into a more formalized representation to
be implemented into a knowledge base. One type of knowledge representation scheme is
"production systems" where rules are used as a mode of reasoning (9). In a rule-based
system environment, an inference engine determines which rules are applicable and which

of these candidate rules should executed in a given situation. The rules are expressed in
the form

IF < conditions > THEN < actions >

The control mechanism is defined by a recognize-act cycle. The "recognize" step deter-
mines which rule to fire and the "act" step executes the conclusion of the rule.

To illustrate knowledge representations, we will build a complete program using "MAD-
CABS Knowledge Builder", which is a novel tool for analyzing production systems. The
knowledge builder overlooks process operation conditions and provides necessary detection
and control.In the ensuing section, we will describe the detection and control strategies
for our sample system, give an overview of knowledge builder, and discuss a very simple
implementation and operation of the program.

System. The network of 25 reactors (figure 1) is desired be operating under "normal"
conditions. At each time instant, a detection scheme checks whether reactors in the
network give rise to any of the following flags,

• Total invasion flag - Raised when the system reaches an invasion steady state
• Potential invasion flag - Raised when the system proceeds in an invasion direction
• Indirect invasion alert- One of neighboring reactors is affected by invasion
• Invasion delay flag - Raised when the system proceeds in an invasion direction after

some time delay.

The detection algorithm computes the invasion flags based on the relative location of the
(R,P) projections wrt the control ellipse and gradient changes with time. The detection
scheme accounts for minor fluctuations in gradient values and outliers in data. For ex-
ample, a potential invasion flag is raised when an (R, P) projection returns "outside the
ellipse" and the dp/dr gradient is positive for about 20 time units. The indirect invasion
alerts facilitate faster detection. Figure 6 shows the flags raised in the R-P domain and
concentration time domain in reactor 2.Table 1 shows the results from the detection al-
gorithm designed using simple IF-THEN rules in MATLAB. We observe that the indirect
invasion flags and potential flags provide faster detection capabilities.

The control strategies are designed based on the detection flags raised. In case of a
potential invasion flag, the control strategy adopted is to isolate the reactor, add an
"antibiotic" to flush out the undesirable species and reconnect the interactions. Other

0 0.2 0.4 0.6 0.8 1
−0.1

0.1

0.3

0.5

0.7

0.9

R

P

Invasion after delay

Potential Invasion

Total Invasion

(a)

0 100 200 300 400 500
0

0.2

0.4

0.6

R
,P

R
P

Invasion after delay

Potential invasion

Total invasion

(b)

Fig. 6. Flags raised by the detection algorithm in reactor 2 in (a)R-P domain (b)Concentration vs time domain

Total Potential Indirect # Total Potential Indirect

1 329 71 - 10 338 177 170

2 338 77 71 13 419 321 200

3 364 110 95 14 398 293 205

4 338 154 141 15 366 198 189

5 334 170 157 17 332 194 169

7 333 134 84 19 363 290 205

8 398 200 112 20 339 220 211

9 332 194 169 25 334 232 228
Table 1
Invasion flags raised by the detection algorithm as time progresses

control strategies such as a slight tweaking of flow rates may be necessary to remove
trace quantities of undesirable species. Figure 7 shows the implementation of the control
strategy on the invaded reactor. We observe that the invading species introduced between
t = (150 − 200), kills the host species. At t = 400, an antibiotic addition, eliminates
the invading species, while a small amount of host species is still present in the system.
The original concentration of host species can be recovered by adding additional species
in the feed.

Knowledge Builder and its implementation. In order to understand the working
and implementation of Knowledge Builder, we shall apply it to a simple application, an
interconnected network of 2 reactors. Each reactor contains an inlet and outlet feed stream
and inter connections with its neighbors. Each reactor contains a stable configuration of

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

time

C
on

ce
nt

ra
tio

n

R
P
Q
Ab

Fig. 7. Antibiobic action

different autocatalytic species. The control objective calls for replacing species in reactor
2. The reactor providing the desired species is designated as "source reactor" and the
reactor to be changed is the "target reactor". The desired transformation can be achieved
by (a) Increasing interconnection flow rate to target reactor (b) Incase the increase is not
sufficient, seek assistance from target reactor.

The knowledge builder components for the source reactor is shown in figure 8. The
knowledge builder’s GUI consists of panels which explain different parts of the rule base.
The "subject panel" shows the working memory or the current state of the process. State
variables, input variables and local variables populate the knowledge base. The process
simulator operates in a continuous mode. At each time instant, the simulator provides the
state and input information. The knowledge builder program updates the state and input
variables based on changes in a "watch file". Variables such as controller status, arbitrator
status are local to the knowledge base and are set to default values. "Status Panel" shows
the matching routines for the components. For example, in figure 8, the controller checks
if the subject "controller status" is assigned to value "attack". The program will test
conditions based on changes to the status of the system. It will then fire all the rules
that depend on this status being true. For each of the rules to be fired, it will execute
all of the rule actions that are assigned weight one. The "rule panel" shows what actions
to execute based on the predicates specified in the "action panel". For example, the rule
named "Rule controller" initiates the action "Proportional Controller" which increases
interaction flow rate. The output from the agents is relayed to the system in the form of
an "out file". The process reads the actuator settings from an out file. Each reactor has an
instance of the knowledge base, which fire different rules based on the initial conditions.
The knowledge base for each reactor is maintained by a "Knowledge Modeler" GUI figure

(9). The knowledge modeler allows negotiation protocols between the knowledge engines
of each reactor.

The performance of the control system is demonstrated in the following example. Two
species with identical growth and death rates kr = 25, d = 0.1 populate in the reactor
network. Initially, feed flow rates f = 0.008 and interaction flow rates g = 0.001 are
identical in both reactors. When the interaction flow rates are manipulated, the outflows
are adjusted to maintain a constant volume. The initial species concentration profile for
reactor 2 is shown in region(a) of figure 10. In times t = (0 − 1000), the knowledge
builder only updates the process variables. At time = 1000 units, the controller status
of the source reactor is set to attack. The knowledge base fires rules to increase the
interaction flow rate from the source to the target reactor. We observe that this change is
not sufficient to overtake reactor 2 (region (b)). In region (c), the target reactor reactor
is exploited to increase its interaction flow rate to the source reactor. The target reactor
requests the source reactor reactor to double its output. The interaction flow rate bounds
are continuously updated and maintained in an arbitrator agent. Requests are accepted
if the requested changes are within the bounds.

5 Research Ahead

The appropriate tools required for the scalability of knowledge builder are under develop-
ment. A general template will be used to describe the basic knowledge of each reactor
in the network. Once the network topology and inter connections are determined, an in-
stance of the knowledge base is copied to every reactor. Additional information (subjects,
statuses, rules) specific to each knowledge base can be incorporated into the builder. The
knowledge builder should be able to support access settings such as private (local to a
KB), protected (visible to its environment) and public (visible to the network) for the
subject variables. The environment for a reactor is defined by its neighbors. A reactor
engine can have access to protected and public subjects for its neighbors. Generalized
request handling procedures for subjects need to be implemented. Another direction of
research will be to explore the panorama of conflict resolution strategies (10). Some of
the strategies available in literature are: rule selection based on a priority order, newly
activated rules are placed above all activations, random activation of rules and many
others.

Fig. 8. Knowledge Builder representation for a 2 reactor system

Fig. 9. Knowledge Modeler illustration for a SourceReactor and Target reactor

0 500 1000 1500 2000 2500 3000
10

−6

10
−4

10
−2

10
0

Time

C
on

ce
nt

ra
tio

n

Species 1
Species 2

(b) (c)(a)

Fig. 10. Strategy for replacing autocatalytic species in reactor 2 (a) (g12, g21) = (0.001, 0.001)
(b)(g12, g21) = (0.0088, 0.001)),(g12, g21) = (0.0165, 0.0088)

References

[1] Birol, I., Teymour, F., “Statics and Dynamics of Multiple Cubic Autocatalytic Re-
actions," Physica D, Vol. 144, pp.

[2] Chaivorapoj, W., Birol, I., Cinar, A., and Teymour, F.„ “Feedback Control of a
Continous-Flow Stirred Tank Reactor with Competing Autocatalators," Ind. Eng.
Chem. Res, Vol. 42, pp. 3765-3785, 2003.

[3] Chaivorapoj, W., Birol, I., and Teymour, F.„ “Competition between Robust and
Non-Robust Autocatalytic Replicators," Ind. Eng. Chem. Res, Vol. 42, pp. 3765-
3785, 2003.

[4] Tatara,E., Birol,I.,Teymour,F.,Cinar,A.(2005),“Agent Based Control of Autocat-
alytic Replicators in Networks of Reactors," Computers and Chemical Engg,Vol
29, pp.807-815.

[5] Tatara,E.,Cinar,A.,Teymour,F.(2007),“Control of Complex distributed Systems with
Distributed Agents," Journal of Process Control,Vol 17, pp.415-427.

[6] Tetikar,D.,Artel,A.,Tatara,E.,Teymour,F.,North,M.,Cinar.A.,(2006),“Agent Based
System for Reconfiguration of Distributed Chemical Reactor Network Operation,"
Proceedings of American Control Conference,Minneapolis.

[7] Hindmarsh, A., Taylor (1998), A. PVODE and KINSOL: Parallel Software for Differ-
ential and Nonlinear Systems; Lawrence Livermore National Laboratory Technical
Report UCRL-ID-129739; Lawrence Livermore National Laboratory: Livermore, CA.

[8] Fitzgibbon,A.,Pilu,M.,Fisher,R.(1999),“Direct Least Square Fitting of Ellipses,"
IEEE transactions on Pattern Analysis and Machine Intelligence,Vol 21, pp.476-
480.

[9] Cronk,R.,Callahan,P.,Bernstein,L.(1988),“Rule based Expert Systems for Network
Management and Operations: An Introduction," IEEE Network,September, pp.7-
18.

[10] Hicks,R.,(2007),“The No-Inference Engine Theory - Performing Conflict Resolution
during Development," Decision Support Systems,pp.434-444.

