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Intensification and Optimization of unit operatiatistillation and thus in further consequence of
rectification process should be carried out as robjective of this work. A combination of Micro Rxess
Engineering and Advanced Process Control (APQ)easetfore applied to latter separation process.

Vapour and liquid phases of a simple batch disitilamay be separated theoretically at equilibriaina
certain pressure and temperature state. A smadrgtpn effect can be achieved by this, because ag
equilibrium stage between liquid and vapour phaghereby realised. Contacting again vapour anddiq
flows leaving one single stage in co-current madefurther separation effect can be achieved. Uretdr
conditions equilibrium will not be reached, which then expressed in calculation as tray efficiency.
Increased mass and heat transport may be obtamedibdbng and separation of flows from single
distillation vessels working at different operatipgints. Such a system of several stages may aso b
denoted rectification, if the streams leaving thermndevices are connected in counter-current djoera
mode. Thereby micro devices are as individual megluepresenting unit operations of such a process.
Modular Micro Rectification (MMR) for discontinuoyshase contact consists of unit operations heating,
cooling, mixing and separating. Heat exchangergemiand cyclones for phase separation are serially
connected to counter-current rectification systeth the highest mass and heat transfer efficiency.
Continuous contacting of phases for the purposeads and heat transfer at counter-current operation
mode with the exception of membrane applicationy amakes sense up to now for absorption process.
Advances were reported by literature for the desfircontinuous and also discontinuous contacting,
counter-current rectification in only one singlecnoi structured apparatus [1,2,3]. Generally coiatirsu
phase contacting counter-current micro devicesardy be seen as useful without occurrence of mixing
effects caused by friction forces on phase intexfac

However, a plant for Modular Micro Rectification rtaining several unit operations offers a
correspondingly large number of manipulable vasgaplwhich have to be coordinated for reasonable
handling of the single devices (Fig. 2). Due todesign of micro scaled devices plants form sojufaited
systems, while for a fully optimized control stih common satisfying solution exists.

When operating an electrical powered evaporator rfadular rectification purposes, designed by
Forschungszentrum Karlsruhe, a strong interactiomass flow with the vapour fraction and the outlet
temperature can be observed [4]. Defined operatoigt for mass flow, temperature and vapour fractio
can only be held with difficulties using traditidmaethods of linear control technology. When méew fis
increased, temperature at the evaporator outletdaced dramatically. Rising then the power ingut t
maintain the temperature leads due to a increapees§ure in the micro-channels, which in turn Ieitbe
mass flow and lifts temperature excessively again.

In a narrow range around operating points for nflass and outlet temperature a step test was peddrm
The resulting step responses were used to tunlIlieontrollers for the coupled loops mass flow and
outlet temperature (Fig. 1: coupled variables).

Time constants of the systems differ strongly freach other. For the effect of power input on thitetu
temperature a dead time of ten seconds and a bms&ant of one hundred seconds could be revealed by
the step tests.
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Fig. 1: Coupling of outlet temperature with massivfidisplayed as linear transfer functions.
Fig. 2: Four stage Modular Micro Rectification (MNIR

The constants of the influence of pump control gigm the mass flow are determined by a dead time o
only 2.6 seconds with a time constant of six sesond

Sampling intervals of 0.1 seconds for controlledalde mass flow and one second for outlet tempegat
had to be chosen. Using the before determined RIBsghe system could not be operated fully stédge
Fig. 3). At mass flows or temperatures or combarati of these variables being not positioned within
identified range the system performs an undampeitlai®n. Due to strong action of the controllers the
system intense stress on the actuators is caugp®BJF
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Fig. 3: Before and after Optimization of the Midtwaporator by NMPC

It could be demonstrated by several experimends,giecise control of the process through the 683
control system can be seen as a challenge. Fomdgraptimization of this multi-variable evaporation
process with nonlinear system dynamics the firseta Nonlinear Model Predictive Controller (NMPC)
had to be applied to the field of Micro Process ieegring. MPC generally has an internal model ef th
complete process by which the historical trendhaf process variables (feed forward, manipulated and
controlled variables) is monitored and registerétknce, it is also possible to calculate and ptddicre
trend of controlled variables for a time horizormem any intervention by the controller is avoidgl [

By use of optimization algorithms similar to a chesomputer the best strategy for the manipulated
variables is generated, thereby a control is cdesldp an optimization task.



To calculate an optimal control sequence for theimdated variables, the MPC performs a minimizatio
of energy consumption and operation costs to ol#taiiven objective, which is expressed by a minimal
difference between set-points to actual value efdbntrolled variables. The square of the deviatwirthe
controlled variables from their set-points togethéth action of the manipulated variables are mined
over a certain future time horizon. Such an objecfunction (J) for a simpl&[ingle] I[nput] SFingle]
Olutput] system with by definition only one manipidd and one controlled variable may be formulated a
followed [6,7,8,9]:

J(u,t):Pmi[yR(yR(t+i)—y(t+i)]2+rDiu:[u(t+i—1)—u(t+i—2)]2
i=N, j=1

This objective function contains also a set of paters for tuning the controller. Through coeffiteRho
(P) and Gamma () the future control behaviour can be manipulatggénalizing energy consumption or
otherwise reducing control efficiency. The resugtinonstrained cost function is non-convex making
detection of relative local optimum and the prei@mtof suboptimal solutions a difficult task. This
obstacle can only be gone around using a combmaticheuristic with gradient optimization methods.
Optimization of complex states like unsteady opegatonditions, changing set-points or constraimts,
advance is performed by genetic algorithm.
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Fig. 4: Simple example for Crossover of parentslpoing offspring after Goldberg [10]
Fig. 5: NARX-Modelling of the outlet temperature

Genetic algorithms are as stochastic optimizati@thiods based on the principle of natural seleciuh
the evolutionary concept of nature. A natural pateamrange of an optimization task is coded asitefi
string by a limited set of characters. These searethods base upon a whole population of indivislual
producing an offspring by the genetic operatorgatian and selection, which is able to give bes@ution
for an optimization task than their parents gemamatvould have done. These artificial individuale a
generated from the strings of a previous generaéidditionally by operator mutation entirely neveges
of information are introduced (See Fig. 4). It is efficient optimization technique that uses histr
information for detection of local extrema. At uestly operation of plant the solution vector is pdsa
every discrete time step by the heuristic algoritbran implementation of gradient method of Levegbhe
Marquardt, which finally performs the exact detectof the function minimum by sequential step mdtho

(0" J +p-diagd " J)) ‘him=-Jf anduy =u,_, +h,.

At completely stationary operating conditions theviously identified solution vector can usually tsed
for the initial control sequence, what directlydsdo a significant reduction of CPU load.
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Grouped nonlinear process models in shape of tw&XAolynomials were first time implemented in a
M{ultiple] I[nput] MJultiple] Olutput] formulation of NMPC (Fig. 5: NARX: N[onlinear]
A[uto]R[egressive] [with] [eK[ogenous] [inputs]). Every training procedure a niaslevolved from a set
of several thousand regressors, which consist mlimear combinations of the lagged manipulated it
controlled and feed forward variables of the prec@&e total number of regressors depends on ghesi
power of the polynomial terms and the lag time\adrg variable. High polynomial order or long lagés
lead directly to increased computation effort andUCload. Various methods were proposed for the
selection of polynomial structure and regressotg. itil now structure selection is still not fuksplved.
For this work variations of th&[orward] R[egression]O[rthogonal] E[stimator] and theSimulation]
E[rror] M[inimization] [with] P[runing] methods were considered.

Using FROE algorithm the model structure is itesglii incremented until a specified prediction aeoyr

is obtained. Thereby parameters are estimated ansnef orthogonal least squares, while the stractur
selection is based on tEfrror] R[eduction]R[atio] criterion:

2 N2
MSPE(M;) - MSPEM; ) gi DX wir( _
[ERR]; = N and aIso[ERR]i =N 5 with the corresponding model
>y (1) >y (1)
t=1 t=1

y(t) =w' (1) (g +&(1),

where w is the auxiliary orthogonal regressor andig an estimated parameter. Because of the
orthogonality of regressors '{t), the significance of every candidate regressan be evaluated
independently.

A more effective criterion estimates the modeldtte on the basis of the simulation error, sulnitig the

M [ean] S[quared] P[rediction] E[rror] with the M[ean] Squared] S[imulation] E[rror]. The resulting
criterion is then denotefimulation] [Error] R[eduction]R][atio]:

MSSE(M; ) - MSSE(M
[SRR]; = M) AMist)

N 2
t
2y

Every iteration step the mod#l;.; is evaluated and compared to the maddelone step before. This
criterion for selecting regressors is also completed by a systematic procedure for regressor deleti
included in the training procedure to simplify ttegressor selection. Not significant terms aretddley a
so called “pruning procedure” similar to Neural 8leA complete iteration of the SEMP algorithm eithe
adds a new regressor to the actual model or sutestione or more of its terms with it, with theestive to
improve the performance by variation of regressors

Every discrete time step the predictions from thesgnomial models of controlled variables massvflo
and outlet temperature are then evaluated numlgrenadl integrated into objective function.

The concept was formulated generically in C++ anglémented as B[ynamic] L[ink] LJibrary] in the
Process Control Software LABVIEW 7 as a MIMO forembn (Fig. 6). For editing the polynomial
models also on LABVIEWS[raphical]U[ser] | [nterface] a parser was created.

Based on experimental results it was demonstrétat NMPC keeps the coupled variables mass flow and
temperature with minimal control activity in thetiea two-phase region at their set-points. Manifada
variables are calculated in optimal ratio to eaitiein

As a consequence the mechanical stress on act@etdrenergy consumption is kept low, which reduces
directly investment costs. A decrease of operativgf can easily be achieved by reduction of theuautno
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of failure output in production process. Model medah caused by variation of plant behaviour ortinle
composition is compensated by error minimizationlosed control loop.
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Fig. 6: Programming Interface of LABVIEW withldbrary Function Node

The proposed "Nonlinear Model Predictive Contraticept has also already been successfully apmied t
mechanical transport systems and de-inking plantiseé field of paper and pulp industry by the epasf

in Grambach near Graz (Austria). For the optimisatind production increase of twenty percent with
additional reduction of chemical consumption in gaper processing of Norske Skog Bruck (Austria) th
project was awarded with the INNOward 2007 of thesthian Federal Economic Chamber in the category
“Energy/Environment”.
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