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Introduction 

Control of gene expression by transcription factors is an integral component 
of cell signaling and gene expression regulation (Hoffmann et al., 2007). Different 
transcription factors exhibit different expression and activation dynamics, and 
together govern the expression of specific genes and cellular phenotypes (Grove 
and Walhout, 2008). An important requirement for the development of these 
signal transduction models is the ability to quantitatively describe the activation 
dynamics of transcriptions so that parameters can be estimated for model 
development. The activation of transcription factors under different conditions 
have been conventionally monitored using protein binding techniques such as 
electrophoretic mobility shift assay or chromatin immunoprecipitation (Elnitski et 
al., 2006).  While these techniques provide snapshots of activation at a small set 
of single time points, they can yield only qualitative or semi-quantitative data at 
best. This approach also requires the use of multiple cell populations for each 
time point at which transcription factor activation is to be measured, and often, 
the true dynamics of transcription factors are not captured due to limited 
sampling points and frequencies. Hence, these methods are not ideal for 
investigating time-dependent activation of transcription factors in a quantitative 
manner.  

More recently, fluorescence-based reporter systems have been developed for 
continuous and non-invasive monitoring of transcription factors and elucidation of 
regulatory molecule dynamics. Recent studies (Thompson et al., 2004; Wieder et 
al., 2005, King et al., 2007) have used green fluorescent protein (GFP) as a 
reporter molecule for continuously monitoring activation of a panel of 
transcription factors, underlying the inflammatory response in hepatocytes for 24 
h. These systems involve expressing GFP under the control of a minimal 
promoter such that GFP expression and fluorescence is observed only when a 
transcription factor is activated (i.e., when the transcription factor binds to its 
specific DNA binding sequence and induces expression from a minimal 
promoter). The dynamics of GFP fluorescence is used as the indicator for 
dynamics of the transcription factor being profiled. The primary drawback with 
this approach is that it does not provide direct activation rates of the transcription 
factors being investigated. Even though transcription factor dynamics influence 
GFP dynamics, the relationship between the two is non-trivial as the induction of 
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GFP fluorescence itself involves multiple steps (i.e., transcription of GFP mRNA, 
GFP protein translation, post-translational processing, etc) (Subramanian and 
Srienc, 1996), and not all of these steps contribute equally to regulation of GFP 
expression. The observed fluorescence dynamics in GFP reporter cell systems is 
the result of two different dynamics: (i) the dynamics of transcription factor 
activation by a soluble stimulus-mediated signal transduction pathway and (ii) the 
dynamics of GFP expression, folding, and maturation. Therefore, it is necessary 
to uncouple the effects of these independent systems in order to quantitatively 
determine transcription factor activation profiles underlying cellular phenotpyes. 

In this work, we develop a strategy for determining transcription factor 
concentrations from fluorescence microscopy data. This technique is based upon 
the following steps:  

1) The image analysis method based on K-means clustering and Principal 
Component Analysis (PCA) (Huang and Hahn, 2007) is implemented to 
obtain a fluorescence intensity profile from the fluorescence microscopy 
images.  

2) Based on the model initially presented by Subramanian and Srienc 
(1996), a model for transcription, translation, and activation of GFP is 
derived to correlate transcription factor concentration with fluorescence 
intensity.  

3) A procedure for solving an inverse problem involving the model 
developed in 2) and the fluorescence data derived from the image 
analysis from step 1) is presented. This procedure computes the 
transcription factor profiles from fluorescence intensity data.  

The technique has been implemented to derive quantitative concentration of 
NF-kB from fluorescence microscopy images of hepatocytes stimulated by TNF-α 
with four different concentrations.  Part of the derived NF-kB data is then used to 
develop and refine a model of the TNF-α signaling pathway. The refined model of 
the TNF-α signaling pathway is tested on data not used for parameter estimation 
and it is found that it can predict the dynamics of TNF-α signaling pathway very 
well.  

 
Preliminaries   

Image analysis based on K-means clustering and Principal Component 
Analysis (PCA) 

This method distinguishes the regions of the image with similar brightness by 
PCA (Hotelling, 1933) and then groups them into the same cluster by K-means 
clustering (Kaufman and Rousseeuw, 1990). The outline of this method is shown 
in the following steps: 

1) For each image from the time-series of images, the areas in the image 
representing cells where fluorescence can be seen are determined by 
PCA and K-means clustering.  

2) Once the cell region has been determined it is possible to compute the 
average fluorescence intensity by the following formula: 
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If,k refers the fluorescent intensity of the kth pixel in a fluorescent cell 
region, Ib,k refers the fluorescent intensity of the kth pixel belonging to 
the background, Nf is the total number of pixels in the fluorescent cell 
region, Nb is the total number of pixels in the background. For a RGB 
image, the fluorescent intensity I is defined as the sum of the values of 
red and green and blue of each pixel. The reason for subtracting the 
intensity of the pixels representing the background is to reduce 
measurement noise due to brightness variations.  

3) The intensity for each image is combined together to get the 
fluorescent intensity profile for the whole set of time-series images.  

 
Model development  

Two models are involved in this work: (a) a model describing the dynamics of 
the proteins involved in TNF-α signaling and (b) a model describing the dynamics 
of the proteins of a green fluorescent protein reporter system. The first model has 
the TNF-α concentration as the input to the system and the output of the system 
is the dynamic profile of NF-kB that results from TNF-α stimulation. The second 
model uses the NF-kB concentration as the input and predicts the fluorescence 
intensity profile that can be measured. Using these two models it is possible to 
determine the NF-kB concentration during an experiment by solving an inverse 
problem of the second model. The generated data set can then be further used to 
adjust parameters of the first model. Figure 1 illustrates the relationship between 
these two models. 

 

 
Figure 1: Relationship between input, output, and concentration of transcription factors with 

GFP-reporter systems. 

The model describing TNF-α mediated signal transduction is shown in Figure 
2 and the equations are given in ‘Appendix 1’. This model is based upon the 
models described by Rangamani and Sirovich，2007 and Lipniacki et al.， 2004 
The model from Lipniacki et al. was used to describe signal transduction from 
IKKn to NF-kB whereas the model from Rangamani and Sirovich’s work was 
used to describe signal transduction from TNF-α to IKKn. The reason for 
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combining these two models is that the model from Lipniacki et al.’s work does 
not describe signal transduction from TNF-α to IKKn, while the paper by 
Rangamani and Sirovich states that the signal transduction from IKKn to NF-kB 
as described in their model should be updated as it represents a simplification of 
what is currently known about the signal transduction pathway.  In order to 
combine these two models the assumption that c-IAP in the reaction “Caspase-
3*+c-IAP->caspase-3*|c-IAP” from Rangamani and Sirovich’s model can be 
replaced with cgent from Lipniacki et al.’s model. The rationale behind this 
assumption is that c-IAP and cgent are both involved in transcription of DNA.  

 
Figure 2: TNF-α signaling pathway 

This integrated model, which consists of 37 differential equations and 60 
parameters, can represent the dynamic behavior of the proteins involved in TNF-
α-mediated NF-kB activation: TNF-α initiates the signal transduction by binding to 
its receptor TNFR1 and forming the complex TNF-α| TNFR1, which then recruits 
TRADD, TRAF2, RIP-1 to form the complex TNF-α| TNFR1|TRADD| TRAF2|RIP-
1. This complex then activates two pathways: 1) it activates the apoptotic 
machinery by recruiting FADD; 2) it activates the NF-kB pathway by promoting 
the neutral form of IKK (IKKn) to the active form of IKK (IKKa). NF-kB is then 
released from the complex NF-kB|IkBα and translocates into the nucleus to 
initiate the transcription/translation process.  Since the presence of NF-kB in the 
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nucleus (i.e., activation of NF-kB) does not immediately lead to fluorescence 
seen in the images it is required to augment the developed model with equation 
describing transcription/translation as well as activation of GFP. The equations to 
be added are based upon the model described by Subramanian and Srienc，
1996，where modifications are made to account for the constant reporter DNA 
levels in our experiments (i.e., due to stable integration of the reporter plasmid 
into the genomic DNA in our reporter cell line，Thompson et al. 2004) as well as 
to include the effect of transcription factor concentrations on the transcription rate. 
These changes result in the following model describing the measurement 
dynamics:  
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where CNF-kB is the concentration of activated NF-kB in the nucleus, m is the 
mRNA concentration, n is the concentration of GFP, and f corresponds to the 
concentration of activated GFP. The values of the parameters shown in equation 
(2) are given in Table 1. The procedure for estimation of C is described below.  
The experimental measurements consist of the fluorescence intensity, I, as seen 
on the images which is directly proportional to the concentration of activated 
green fluorescent protein: 

If Δ=  (3)
Where Δ  is the ratio between activated GFP and computed fluorescence 
intensity.  

As I can be obtained from the fluorescence images that have been processed 
by the image analysis procedure described in the preliminary section, the 
dynamics of NF-kB can be computed by solving an inverse problem involving 
equations (2). 

Table 1  - Parameters for the model shown in equation (2). 

Parameter Value Parameter Value 

Sm 373 1/hr Sf 0.347 1/hr 

Dm 0.45 1/hr C 108 nM 

Sn 780 1/hr p 5 nM 

Dn 0.5 1/hr m(0), n(0), f(0) 0 nM 
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A procedure to get the NF-kB profile from the fluorescent 
intensity data by solving an inverse problem  
 

The activation of NF-kB in H35 reporter cells was investigated by stimulating 
with different TNF-α concentrations (6ng/ml, 10ng/ml, 13ng/ml, and 19 ng/ml) as 
described in the Methods section. The data was analyzed using the described 
image analysis procedure, resulting in the fluorescence intensity profiles shown 
(red line) in Figure 3. The error bars indicated +/- one standard deviation from the 
mean of the measurements taken for each time point. 

 
Figure 3: (A) Comparison of experimental data and the model predictions for f/Δ  where the 
NF-kB concentration serves as the input to the model and is taken from Hoffman et al.’s 
paper (2002);  (B) Experimental data and the fitted curve Δ/f  for different TNF-α 
concentrations. 

We developed a procedure that computes the NF-kB concentration profile 
from the experimental data by solving an inverse problem given by equations (2) 
and (3). In order to avoid a numerical solution of this inverse problem, we derived 
an analytical solution which computes CNF-kB from the fluorescence intensity 
profile I. This analytical solution treats equation (2) as a static nonlinearity 
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which is followed by a system of linear differential equations: 
mDpuSdtdm mm −=/   

nSnDmSdtdn fnn −−=/  
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 (5)
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Taking a Laplace transform of equation (5) results in f(s) as a function of u(s): 
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While it is possible to choose any function to describe u(s), we opted for  
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as u(s) represents a concentration profile of CNF-kB that shows damped oscillatory 
behavior as has been reported in the literature (Hoffmann et al, 2002). 
Substituting equation (7) into equation (6) and performing an inverse Laplace 
transform results in: 
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where A1, A2, A3, A4, A7, andϕ are constants with the values given in ‘Appendix 2’.  
The values of the parameters ε, nω  and Tα are estimated by fitting f(t) to the 
experimental data for each experiment. The concentration of NF-kB is then given 
by: 
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The values of C from equation (4) and Δ  from equation (3) only need to be 
estimated once and can be assumed to be constant for all future experiments. 
We have chosen the concentration profile for NF-kB as reported in the paper by 
Hoffman et al., 2002, which corresponds to a stimulation with 10 ng/ml of TNF-α, 
as the input, and have estimated C and Δ  from experimental data that we have 
collected for stimulation with 10 ng/ml of TNF-α. The value of C was determined 
to be 108 nM and Δ  was found to be equal to 2.5562×104. It should be noted 
that some of the data derived from a stimulation with 10 ng/ml of TNF-α was used 
for determining these parameter values, while other data points will be used for 
testing model. Figure 3A shows the fit of equation (11) to the data generated by 
this experiment.  

Figure 3B depicts the experimental data for stimulation with 6 ng/ml, 13 ng/ml, 
and 19 ng/ml of TNF-α as well as the results of the system identification using 
equation (8). The values for C and Δ  are constant for these experiments, 
however, the values for ε, nω  and Tα are estimated separately for each data set. 
The corresponding concentration profiles for NF-kB, as computed by equation (9) 
are shown in Figure 4. It can be seen that stimulation with higher concentrations 
of TNF-α results in larger long-term concentrations of NF-kB as well as in higher 
peak concentrations. One important aspect of this procedure is that the data 
obtained is quantitative (i.e., numerical values of the NF-kB profile at each time 
point are obtained) and not merely qualitative.  
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Figure 4: NF-kB profiles computed via solution of the inverse problem for TNF-α 

concentrations of 6 ng/ml, 10 ng/ml, 13 ng/ml, and 19 ng/ml. 
 

These results for stimulation with 6 ng/ml, 13 ng/ml, and 19 ng/ml of TNF-α 
were used to estimate parameters of the signal transduction pathway model. 
Since the developed model contains many more parameters than can be 
estimated from three time series of data, it was required to use local sensitivity 
analysis to determine which parameters should be re-estimated. It was 
determined that the parameters c3, k1p, and kr are good candidates for estimation. 
Nonlinear least square routines in MATLAB were then used to estimate these 
three parameters. The estimated values were found to be 0.0104, 0.0740 and 
2.50, respectively. Since the data derived from the stimulation with 10 ng/ml of 
TNF-α was not used for estimating these parameters, this data set can be used 
for validating the accuracy of the updated model. Figure 5 shows the model 
prediction for 10 ng/ml of TNF-α together with the experimental results derived 
from the described image analysis procedure. It can be concluded that the 
updated model predicts experimental data very well. 

 
Figure 5: Comparison between NF-kB profiles computed via the presented technique for 10 
ng/ml of TNF-α and simulation of the model where some parameters have been re-estimated. 
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Discussion and conclusion 

In this study, we have demonstrated that transcription factor activation profiles 
can be quantitatively extracted from fluorescence reporter data. The proposed 
approach was effective in deriving transcription factor activation rates from GFP 
profiles generated from NF-kB reporter cells stimulated with 10 – 50 ng/mL of 
TNF-α, a concentration range that is commonly used in cell culture experiments 
(Damelin et al., 2007; King et al., 2007) and reported to result in strong activation 
of NF-kB (Wieder et al., 2005). However, predicting NF-kB activation at lower 
concentrations of TNF-α(< 10 ng/mL) was not as effective due to low levels of 
GFP signal. This is evident from Figure 3B which shows a better correlation 
between the model and experimental data at higher (13 and 19 ng/mL) than at 
lower (6 ng/mL) TNF-α concentrations. Therefore, while our method is effective 
for moderate-to-high levels of activation, further improvement (e.g., in the image 
analysis methods) is needed to increase the GFP signal/noise ratio for effectively 
predicting profiles of low abundance transcription factors. 

Another discrepancy between the model and experimental data is predicting 
long-term NF-kB activation profiles. The data in Figure 3B shows that 
fluorescence decreases after ~ 11 h even though the stimulus (TNF-α) is 
continually present, with the decrease being more pronounced at the higher 
concentrations. However, this decrease is not reflected in Figure 3B which shows 
NF-kB levels being constant beyond 11 h as the assumed model structure from 
equation (7) cannot represent this decrease. It is possible to postulate a different 
profile for the transcription factor, resulting in differences in equation (7), e.g., one 
that can reflect such a decrease. However, it is not clear if the decrease in 
fluorescence observed after ~ 11 h of stimulation results from experimental 
artifacts (i.e., fluorescence photobleaching and cell death arising from cells being 
repeatedly exposed to UV light for imaging) or is a real biological phenomenon 
(i.e., consequence of change in gene expression arising due to constant 
stimulation with TNF-α). A better understanding of long-term activation is needed 
to evaluate this behavior. 

In summary we have developed a methodology for quantitatively determining 
transcription factor profiles. This technique makes use of fluorescence 
microscopy images from a GFP reporter system for transcription factor activation 
and involves solving an inverse problem to determine the transcription factor 
profile from the fluorescence intensity dynamics. Data generated by this method 
can then be used to estimate parameters for signal transduction pathway models. 
This technique was applied to the activation of NF-kB by TNF-α, however, it can 
be used to determine transcription factor profiles for any system where limited 
qualitative knowledge about the transcription factor dynamics exists. 
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Appendix 1 

This file describes the equations, the initial values of state variables, and 
parameters of the model describing TNF-α mediated signal transduction 
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State variables of the model and their initial values: 

Name Species Initial values (µM) 
x1 TNFR1 0.1 
x2 TNF-α/TNFR 0 
x3 TRADD 0.15 
x4 TNF-α/TNFR1/TRADD 0 
x5 TRAF2 0.1 
x6 TNF-α/TNFR1/TRADD/TRAF2 0 
x7 RIP-1 0.1 
x8 TNF-α/TNFR1/TRADD/TRAF2/RIP-1 0 
x9 IKKn 0.2 
x10 TNF-α/TNFR1/TRADD/TRAF2/RIP-1/IKKn 0 
x11 IKKa 0 
x12 inactive IKK 0 
x13 cytoplasmic IKK|IkBa complex 0 
x14 cytoplasmic IKK|IkBa|NF-kB complex 0 
x15 free cxtoplasmic NF-kB 0.0003 
x16 free nuclear NF-kB 0.0023 
x17 cytoplasmic A20 0.0048 
x18 A20 transcription 0 
x19 free cytoplasmic IkBa 0.0025 
x20 free nuclear IkBan 0.0034 
x21 IkB transcription 0 
x22 cytoplasmic IkBa|NF-kB complex 0.0592 
x23 Nuclear IkBa|NF-kB complex 0.0001 
x24 Control gene mRNA level or c-IAP 0 
x25 FADD 0.1 
x26 TNF-α/TNFR1/TRADD/TRAF2/RIP-1/FADD 0 
x27 TRADD/TRAF2/RIP-1/FADD 0 
x28 Caspase-8 0.08 
x29 TRADD/TRAF2/RIP-1/FADD/caspase-8 0 
x30 Caspase-8* 0 
x31 Caspase-3 0.2 
x32 Caspase-8*/caspase-3 0 
x33 Caspase-3* 0 
x34 DNA-fragmentation 0 
x35 Caspase-3*/c-IAP 0 
x36 DNA intact 0.8 
x37 Caspase-3*/DNA 0 

Note: u is the concentration of TNF-α, ng/ml. The molecule weight of TNF-α is 17 kDa. The unit 
ng/ml can be converted to µM by dividing by 17×103. y is the system output NF-kB after being scaled 
by kr in units of µM.  
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Values of the parameters 

Name Value Name Value 

kv 5 k1p 0.0740 (0.185) 
AB* 1 k15p 0.185 
c1 5×10-7 AB k2p 0.00125 

c2 0 k16p 0.00125 
c3 0.0104 (0.0004) k3p 0.185 
c4 0.5 k17p 0.37 
c5 0.0003 k4p 0.00125 
k1 0.0025 k18p 0.5 
k2 0.1 k5p 0.185 
k3 0.0015 k19p 0.2 

kdeg 0.000125 k6p 0.00125 
a2 0.2 k20p 0.1 
a1 0.5 k7p 0.185 
a3 1. k21p 0.1 
t1 0.1 k8p 0.00125 
t2 0.1 k22p 0.06 

AA* 1 k9p 0.185 
c1a 5×10-7 AA k23p 100 

c2a 0 k10p 0.00125 
c3a 0.0004 k24p 0.185 
c4a 0.5 k11p 0.37 
c5a 0.0001 k25p 0.00125 
c6a 0.00002 k12p 0.014 
i1 0.0025 k26p 0.37 
e2a 0.01 k13p 0.00125 
i1a 0.001 k14p 0.37 
e1a 0.0005 k28p 0.5 
c1c 5×10-7 p 1.75 

c2c 0 Tr
* 1 

c3c 0.0004 kr 2.5 

* Note: 1) AA = 1 refers to wt cell, while AA = 0 refers to IkBa deficient cell 
  2) AB = 1 refers to wt cell, while AB = 0 refers to A20 deficient cell  
  3) Tr = 0 when TNF-α is off, while Tr = 1 when TNF-α is on 
  4) Values in brackets refer to the model fit to the experimental data 

 
 
 
 
 
 



 15

Appendix 2 

Equations for computing the values of the constants found in Equation (11) 
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