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1. Introduction 

Mathematical modeling has become an essential approach to understand the mechanisms and 
dynamics in a system. With advent of computing power and experimental techniques, modeling 
of large-scale complex systems is accessible and it has become a key component in various 
research areas. For example, in systems biology mathematical modeling has been a keystone 
(Kitano 2002). To study signal transduction pathways a number of large scale models have been 
developed (e.g. Schoeberl et al., 2002; Yamada et al., 2003; Singh et al., 2006) which provide a 
fresh insight into the biological systems. The structure of a model is often built by mechanism 
analysis while the parameters are often required to be updated from experimental data. The 
usefulness of a model is highly dependent on the quality of the model. However accurate 
estimation of the large scale systems is still a challenge. 

A great number of parameters contrasted with the limited experimental data results in the 
over-parameterized model and not all the parameters are identifiable in practice. If parameters 
are not practically identifiable then a small amount of noise in the data will result in large 
variations of the estimated value of the parameters and the parameters can not be estimated 
accurately (Walter and Pronzato, 1990). Estimation of an over-parameterized model is an ill-
posed inverse problem and some regularization methods are required to guarantee the 
uniqueness and stability of the solution (Aster et al., 2005). A widely used regularization is to 
select a subset of parameters to be estimated while all other parameters are fixed at a constant 
value. The question then becomes how to select the identifiable parameters to be estimated. 

The identifiability of a set of parameters depends on the effect that changes in their values 
have on the output and the effect can be in turn characterized by the sensitivity vectors. Several 
methods for parameter selection based on sensitivity vectors have been proposed in the 
literature. These include, but are not limited to, a collinearity index method (Brun et al., 2001), a 
column pivoting method (Velez-Reyes and Verghese, 1995), an extension of the relative gain 
array (Sandink et al., 2001), a Gram-Schmidt orthogonalization method (Yao et al., 2003), a 
recursive approach based upon principal component analysis (Li et al., 2004) and a combination 
of Hankel singular value and singular value decomposition (Sun and Hahn, 2006). A systematic 
approach for parameter selection is based on optimality criteria computed from the Fisher 
information matrix. The inverse of Fisher information matrix provides a lower bound for the 
covariance matrix of parameter estimators (Walter and Pronzato, 1990) and it can serve as a 
measure for the quality of a parameter set. A subset of identifiable parameters can be selected 
based upon optimizing some criteria such as the D-optimality or the modified E-optimality 
criterion (Weijers et al., 1997; Brun et al., 2002). Parameter selection has been used in a variety 
of applications, ranging from ecological systems (Anh et al., 2006), power systems (Hiskens, 
2001), production systems (Bastogne et al., 2007), chemical reactions (Kou et al., 2005), 
biochemical networks (Gadkar et al., 2005) to wastewater treatment processes (Sin and 
Vanrolleghem, 2007). 

Generally by defining an objective function to measure the quality of a parameter set 
parameter selection can be formulated as a combinatorial optimization problem, however, it is 
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nontrivial to find the solution. For small scale system the exhaustive search (Weijers et al., 
1997) can provide the exact solution. However, even for medial scale system the total number of 
possible combination of parameters is too large to be enumerated. Stochastic search such as the 
genetic algorithm (Chu and Hahn, 2007) provides a way to select parameters for medial and 
large scale systems. Another approach is the stepwise methods which select parameters one by 
one and in each step a parameter is selected to optimize the criterion function. The 
orthogonalization method including householder transformation (Velez-Reyes and Verghese, 
1995) and Gram-Schmidt procedure (Yao et al., 2003) can be regarded as an approach to 
maximize D-optimality criterion stepwisely (Chu and Hahn, 2007). 

However, the existing methods all concentrate on search in identifiable parameter sets. This 
work provides a different avenue for parameter selection. The pairwise indistinguishable 
parameter sets are determined first, in which any two parameters can not be distinguished. Since 
the parameters belonging to the same indistinguishable set can not be estimated simultaneously 
the search of all combinations of parameters can be reduced to search of parameters from 
different indistinguishable sets. The number of possible combinations will be reduced 
dramatically. 
 
2. Background 
2.1 Identifiability 

Parameter identifiability is an important issue in estimation and basically it is cast into two 
category: analytical (or structural, priori) identifiabilty and numerical (or practical, posteriori) 
identifiability (Walter 1987; Walter and Pronzato, 1997; Ljung, 1999). The analytical 
identifiabilty studies the uniqueness of solution in estimation while the numerical identifiability 
investigates the stability of the solution. The analytical identifiabilty can be also divided into two 
kinds: the global identifiability which guarantees the unique solution in a large range of 
parameter space and the local identifiability which guarantees the unique solution in a 
neighborhood of a given parameter value. It is easy to see the global identifiability includes the 
local identifiability however it is much more difficult to test. The common methods including 
differential algebra (Ljung and Glad, 1994), Taylor series approach and similarity 
transformation (Chappell et al., 1990) are restricted to small scale systems. 

The local identifiability is relatively easy to check. The condition is based on the rank of the 
sensitivity matrix. The local identifiability is related with this work and to make it clear the 
definition and the condition from Rothenbe (1971) are used. 
 
Definition 1: A parameter point θ0 is said to be locally identifiable if there exists an open 
neighborhood of θ0 containing no other θ which produces the identical observations y. 
 
Condition 1: Let θ0 be a parameter point and the sensitivity matrix T( ) = ∂ ∂S θ y θ  has constant 
rank in a neighborhood of θ0. Then θ0 is locally identifiable if and only if S(θ0) is nonsingular. 

 
It should be noted the condition that the sensitivity matrix has constant rank is necessary. If 

this condition is removed then the nonsingularity of the sensitivity matrix is just a sufficient 
condition for local identifiability, or, in another word, a rank deficient sensitivity matrix does not 
imply that the parameters are not locally identifiable. The condition of constant rank has to be 
checked analytically and only the value at a parameter point is not enough. 

The analytical identifiability guarantees the existence of the unique solution at least in a 
small range. However the analytically identifiable parameters may not be estimated accurately in 
practice. If sensitivity matrix is not singular but is close to singularity, the noise in data will be 
amplified in the procedure of estimation and result in large variations in estimated parameter 
value. To obtain an accurate estimation it is also required that the sensitivity matrix should be far 
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from singularity. However the term of ‘far from singularity’ has no unified definition and 
various functions are used to measure the distance to singularity of the sensitivity matrix. A set 
of them are the experimental optimality criteria presented in the next subsection. 
 
2.2 Optimality criteria of the Fisher Information Matrix 

The numerical identifiability can be measured by the parameter covariance matrix. If the 
covariance matrix is large then the parameters are not numerical identifiable. However, the 
covariance matrix can only be computed after the parameters have been estimated and it is also 
affected by the estimation algorithm. Alternatively, the Fisher information matrix can be used as 
its inverse provides the Cramer-Rao lower bound for the covariance matrix (Ljung, 1999). 

Assume the measured output is a function of the parameters affected by measurement noise 
( )= +y y θ ε , (1)

where T
1[ ( ),  ,  ( )]ny t y t=y  is the observation of the output, y(θ)= [y(t1,θ), …, y(tn, θ)]T is the 

true value and ε= [ε(t1), …, ε(tn)]T is the measurement noise. In practice the measurement noise 
is often assumed to be normally distributed with zero mean and a covariance given by the matrix 
Σ=σ2I. The Fisher information matrix, F, is given by 

( )
T

T T

∂ ∂ =  ∂ ∂ 
y yF θ
θ θ

. (2)

Without loss of generality for the procedure, it can be assumed that σ2 = 1. 
To reduce the variations in estimated parameters it is desired to maximize the Fisher 

information matrix in some sense in order to reduce its inverse. To measure the size of the 
Fisher information matrix precisely a set of real function is defined. Such functions are called 
the experimental optimality criteria and named alphabetically (Kiefer, 1959). The most popular 
experimental optimality criterion is the D-optimality criterion which maximizes the logarithm of 
the determinant of the Fisher information matrix: 

* max ( ) max log det( )D Dϕ ϕ= =F F . (3)
This criterion minimizes the volume of the confidence ellipsoid with an arbitrary fixed 
confidence level for a least square estimator. Other common criteria (Kiefer, 1959; Atkinson et 
al., 2007) includes the E-optimality which maximizes the least eigenvalue of Fisher information 
matrxi 

* max ( ) max ( )E E nϕ ϕ λ= =F F . (4)
and modified E-optimality which minimizes the condition number 

* min ( ) min ( )ME MEϕ ϕ κ= =F F . (5)
To optimize these criteria, the Fisher information matrix should be far from singularity. And 

from relation between the Fisher information matrix and the sensitivity matrix (Eq.2) it is 
equivalent to that the sensitivity matrix is far from singularity. The optimality criteria provide a 
set of functions to measure the distance to singularity of the sensitivity matrix for numerical 
identifiability test. 

If the parameters are not all numerical identifiable a set of identifiable parameters are often 
selected for estimation. When a set of parameters selected the Fisher information matrix become 

( ) ( )TT= =LF L FL SL SL . (6)
where the selection matrix L is given by 

1 2 mi i i =  L e e e . (7)
The set { }1 2, , , mi i i  denotes the selected parameters and ei is the i-th column of the identity 
matrix. Then the problem of parameter selection becomes search of the selection matrix to let 
the Fisher information matrix far from singularity by optimizing some criterion function. 
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However, this is a combinatorial problem and not trivial to solve. A way to obtain an 
adequately good solution is the forward selection, which adds a new parameter into the selected 
set each step and the parameter added is determined by optimizing the criterion. One kind of 
forward selection is the Gram-Schmidt orthogonalization method (Yao et al., 2003). Using this 
technique, the first parameter selected has the largest norm of the sensitivity vector. In a second 
step the sensitivity vectors of other parameters are projected on to the space orthogonal to the 
first sensitivity vector. From the projected sensitivity vectors, the longest one is chosen and the 
corresponding parameter is selected as the second parameter in the set. The same procedure is 
repeated to select the remaining parameters until the number of parameters to be estimated is 
reached or until the length of the projected sensitivity vectors decreases below a certain 
threshold. Another version of orthogonalization method uses the Householder transformation for 
orthogonalization (Velez-Reyes and Verghese, 1995) which extends the linear version (Golub 
and van Load, 1989) to the nonlinear systems. The basic procedure is the same as the Gram-
Schmidt procedure except there is a Householder mapping in each step. It has been shown that 
the orthogonalization method is in fact a stepwise method to maximize D-optimality criterion 
(Chu and Hahn, 2007). The forward selection can not guarantee to find the optimal solution 
however it can quickly find a suboptimal solution close to the optimal one. Because of it 
simplicity, the orthogonalization method has attracted a wide attention (e.g., Burth, 1999; 
Gadkar et al. 2005; Kou et al., 2005; Yue et al., 2006; Jaqaman and Danuser, 2006).   
 
3 Investigation of pairwise indistinguishable parameter sets 

If the sensitivity vectors of two parameters are not parallel then the parameters can not be 
reduced to one and they are distinguishable. However, if the sensitivity vectors are close to 
paralleling the two parameters will have very similar effects and in practice the difference in 
effects to distinguish them may be so tiny that they are overwhelmed by the noise in the data. In 
this case the parameters are said to be numerically pairwise distinguishable. 

Before search for the numerically distinguishable sets a value to measure how close a 
sensitivity vector parallel to one another is required. Naturally the angle between two sensitivity 
vectors provides a way to measure the closeness of the vectors. A similarity measure of two 
parameters can be defined by the angle as 

T

2 2

cos i k
ik

i k

φ =
s s

s s
, (8)

where [ ]0, 2ikφ π∈  is the angle between sensitivity vector si and sk. The range of the similarity 
measure is from 0 to 1. When it equals 1, the two parameters have equivalent effect and the case 
returns to the analytical indistinguishability. When it equals 0, the sensitivity vectors of the 
parameters are orthogonal and the parameters have distinct effects. It is should be noted that the 
similarity measure is the absolute value of Pearson’s correlation coefficient. The absolute value 
is because the parameters will have equivalent effects when their sensitivity vectors parallel to 
each other no matter if they are in the identical direction or in the opposite direction. 

Based on the similarity measure, the parameters can be grouped by the clustering algorithms. 
Clustering is an unsupervised classification which partition a data set into subsets (groups), so 
that the data in each subset share some common trait. In this work the parameter set is 
partitioned by the parameter effects and the parameters in the same group have similar effects. 
The groups clustered are indeed the numerical indistinguishable required. There are a great 
number of clustering algorithms (Duda et al., 2001; Theodoridis and Koutroumbas, 2006) and 
the agglomerative hierarchical clustering is used. 

This method builds the hierarchy from the individual parameter to the whole set by 
progressively merging groups. In the initial stage, each parameter is clustered into a one 
parameter group. At each middle stage two groups are merged into a new group and the two 
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groups selected have the largest similarity measure. There are several approaches to define the 
similarity between groups based on the similarity between individual parameters. The approach 
of complete linkage is used which uses the least similarity value between the parameters in two 
groups as the similarity measure of the two groups. By this approach the least similarity value of 
parameters in a group can be controlled by choosing the number of groups. The fewer groups 
partitioned the smaller the least similarity value in a group. 

Investigation of the pairwise indistinguishable sets reveals a relationship among parameters. 
The information of which parameters have the similar effects is very helpful to study the 
mechanism of a system. An important application is to select the identifiable parameter set. 
Parameter selection can be formulated as a combinatorial optimization problem to maximize 
some criterion function which measures the degree of identifiability of a set of parameters. A 
commonly used criterion function is the D-optimality criterion which is formulated as  

( )
1

1

*

( , )
( , )

1 2

       arg max  log det ( )

s.t.  ( )  with  that 1,  1

       z

       z {0,1},  1

ns

n js

i i
i i j i s

n s

i

i z j n

z z n

i n
θ

θ

=

= = =

+ + + =

∈ =

z
z F z

F z FIM . (9)

The decision vector {0,1}nθ∈z denotes whether a parameter is included in the selected parameter 
subset. If zi=1 then θi belongs to the selected subset with the size of ns. The matrix FIM is the 
Fisher information matrix of all parameters. F(z) is the Fisher information matrix of the 
parameters included in the selected subset and it is equal to the principal submatrix of FIM with 
the indices of the non-zero decision variables (the entries of column ij and row ik,  j, k = 1…ns). 

However, the solution to the combinatorial problem is not trivial. Even for medial scale 
system (e.g., 10 selected from 50) the total number of possible combination of parameters is too 
large to be searched exhaustively. Clustering parameters provides a new approach to solve the 
combinatorial problem for parameter selection. Search of which parameters can not be estimated 
together is performed before search of which parameters can be estimated simultaneously. Since 
the parameters in a pairwise indistinguishable set can not be estimated together there is no need 
to try their combinations in the search. Identification of indistinguishable sets inserts the new 
constraints to the optimization problem to reduce the possible number of combination 

1
in

i
z ≤∑ , (10)

where 
inz  represents if the i-th parameter in the n-th indistinguishable set is selected or not and 

in an indistinguishable set at most one parameter can be selected for estimation. Further, a 
representative parameter can be selected from each indistinguishable set and the parameters for 
estimation can be searched from the combinations of the representative parameters. Clustering 
parameters can be regarded as a ‘dimensional reduction’ method. It can reduce the number of 
possible combination dramatically and make it possible for an exhaustive search. 

 
Algorithm of parameter selection base on parameter clustering 
Step 1. Calculate the sensitivity vectors of the output with respect to the parameters. 
Step 2. Determine ns, the number of parameters per set, by singular value decomposition 

of the sensitivity matrix or the methods of forward selection. 
Step 3. Wipe out the insignificant parameters whose sensitivity vectors have small length 

(e.g., less than 5% of the largest one). 
Step 4. Cluster the parameters into ng (ng≥ns) groups with the similarity measure (Eq. 8) 

by hierarchical clustering. 
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Step 5. Select the parameter which has the largest sensitivity vector in a group as the 
representative of the group. 

Step 6. Select ns parameters from ng representatives to optimize the criterion function by 
exhaustive search. 

 
There are different approaches to calculate the parameter sensitivity in Step 1 and one 

commonly used is to calculate the sensitivity value T( )t∂ ∂y θ by solving the system equations 

( )

( )

, ,

 , ,

d
dt

=

=

x f x u θ

y h x u θ
, (11)

and the sensitivity equations simultaneously 

T T T T

T T T T    

d
dt

∂ ∂ ∂ ∂
= +

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

= +
∂ ∂ ∂ ∂

x f x f
θ x θ θ
y h x h
θ x θ θ

, (12)

where x, u, y, θ are states, inputs, outputs and parameters respectively. The sensitivity vector is 
consisted of the sensitivity value at different time points 

TT T T
1 2( ) ( ) ( )i i i n it t tθ θ θ = ∂ ∂ ∂ ∂ ∂ ∂ s y y y , (13)

where si is the sensitivity vector with respect to parameter θi. 
The number of parameters per set can be determined by the numerical rank of the sensitivity 

matrix. Each column of the sensitivity matrix is a sensitivity vector of a parameter. The number 
of columns is equal to the number of parameters. However, due to the parameter correlation 
sensitivity matrix will be rank-deficient or close to singularity. In this case some singular values 
of the sensitivity matrix are zero or close to zero. The numerical rank of the sensitivity matrix is 
the number of the largest singular values greater than a threshold. The forward selection as the 
orthogonalization method can be also used to determine the number of parameters per set and it 
will have the similar results with singular value decomposition of the sensitivity matrix. 

Step 3 is a screening of parameters based on their sensitivity values only. Science the 
parameters have small sensitivity value are difficult to be estimated no matter what 
combinations they are in, these parameters can be discarded in further analysis. The number of 
groups is a key variable in the algorithm which controls the discrepancy value between the 
original function and the reduced one and it also have a significant effect on the optimal solution 
searched. Using the hierarchical clustering the hierarchical tree is obtained. From the tree it is 
easy to see the relation between the least similarity value and the number of groups. So the 
number of groups can be determined by the least similarity value required. 

A parameter in an indistinguishable set can compensate the effects of other parameters in the 
set. However, if the sensitivity value of the parameter is small a large change of the value is 
required for the compensation and if the sensitivity value is large a small change is required. A 
parameter with a large sensitivity value is easy to be estimated from the noise data than a 
parameter with a small sensitivity value. So the representative of a set is selected as the one has 
the largest sensitivity value in Step 5. The number of combination of representatives is much 
smaller than the number of all parameters and an exhaustive search is feasible. 

 
4 Case study 

Modeling of biochemical reactions in a cell has been a keystone in systems biology. 
However a difficulty in the modeling is that the models often contain even hundreds of 
parameters while the experimental data gathered is still scarce. So not all the parameters are 
identifiable and a set of identifiable parameters is often selected for estimation. Parameter 
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selection, such as the Gram-Schmidt orthogonalization method, has attracted a wide attention in 
modeling of large scale biochemical networks (Gadkar et al. 2005; Yue et al., 2006; Jaqaman 
and Danuser, 2006). 

To illustrate the technique a model of a signal transduction network (Huang et al., 2007) is 
used. The model, shown in Figure 1, contains two pathways: Janus-associated kinases & signal 
transducers and transcription factors are activated in one pathway while the other pathway 
involves the activation of mitogen-activated protein kinases and it is updated from the model of 
Singh et al. 2006. This model consists of 72 nonlinear ordinary differential equations which 
include 124 parameters. The details description of the model and value of the parameters can be 
seen in the references (Singh et al., 2006; Chu et al., 2007; Huang et al., 2007) 

From the 124 parameters 7 is selected for estimation. The number of parameters selected is 
determined by singular value decomposition of the sensitivity matrix. The singular values 
beyond the largest 7 are close to zero. Use of the orthogonalization method will have the same 
result. The 74 insignificant parameters the sensitivity value of which are less than 5% of the 
largest one are removed before selection. The problem then becomes a selection of 7 parameters 
from 50 to optimize the D-optimality criterion. The total number of possible combinations is 
near 107 and there is an intensive computation burden for exhaustive search. To compare, the 
orthogonal method, a genetic algorithm and the clustering method are all applied.  
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Figure 1. The model of IL-6 signaling pathway 

 
Figure 2 shows the dendrogram of hierarchical clustering of parameters. It is obvious to see 

that some parameters have very high similarity value. The sensitivity vectors of those 
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parameters nearly parallel and it is difficult to distinguish the effects of any two parameters. The 
least similarity value can be also read from the figure. For example, the dash line shows the least 
similarity when the parameters are clustered into 12 groups. As increase of the number of groups 
the dash line will move down and the least similarity value will increase. Table 1 lists the least 
similarity value changing with the number of groups. 
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Figure 2. The dendrogram of hierarchical clustering of parameters 

 
When the parameters are grouped, the parameter which has the longest sensitivity vector in a 

group is chosen as the representative of the group. Then the parameters for estimation are 
selected from the representatives by an exhaustive search to maximize the D-optimality 
criterion. The largest criterion value searched for different number of groups is shown in Table 
1. The criterion value is small when the parameters are clustered into 7 groups. This is because 
the similarity of parameters in a group is not large enough that the representative is able to cover 
the total effects of a group. There is also a large discrepancy between the original model and the 
reduced one. However, as increase of the number of groups the largest criterion value rises. 
When the parameters are clustered into 12 groups the criterion value increases to the highest one 
and it stays at the value as increase of the number of groups. It gives a sign that an adequately 
good solution is found. The parameters in the 12 groups and the representatives are shown in 
Figure 2. 

 
Table 1. The results by clustering method for different number of groups 

No. of groups 7 8 9 10 11 12 13 14 15 
Least similarity 0.862 0.889 0.894 0.924 0.935 0.948 0.959 0.962 0.977 
Criterion -4.139 -0.346 2.471 3.680 3.680 4.113 4.113 4.113 4.113 
Discrepancy 0.430 0.305 0.272 0.074 0.031 0.029 0.014 0.009 0.008 

 
To have an idea of how good the subset searched by clustering method, the optimal subsets 

searched by the orthogonalization method and the genetic algorithm are listed in Table 2. Rather 
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than the optimal one the genetic algorithm can also find some suboptimal sets listed in Table 2 
as well. The optimal set searched by clustering method is identical with that searched by genetic 
algorithm. The set has the criterion value larger than the one searched by the orthogonalization 
method. The orthogonalization method is a forward selection approach to maximize the criterion 
stepwise. If the number of parameters per set is one then the D-optimality criterion is reduced to 
the length of the sensitivity vector. So in the first step the method of forward selection will select 
the parameter which has the longest sensitivity value. The parameter in this case is kf7. However 
the optimal set searched by clustering method and genetic algorithm does not include this 
parameter. This indicates that the forward selection may fail to find the optimal solution. 

Ability to search a collection of (sub-)optimal solutions rather than the only optimal one is 
an advantage for the genetic algorithm. From the solutions some relationship among the 
parameters can be found. For example, the second set searched by genetic algorithm has only 
one parameter, ka26, different from the one, kf70, in the first set and the difference in the criterion 
value between the two sets is minor. This means that in practice the two parameters are 
interchangeable. However, the clustering method shows it more clearly. The two parameters are 
clustered in the same group (the 10th group) shown in Figure 2 so one can be used to replace 
another. The same situation happens between the 3rd set and the 1st one. The different parameters 
kf18 and kf19 are in the same group (the 6th group). Rather than providing the optimal set for 
parameter selection clustering method can also reveal the relationship among parameters. 
 

Table 2. The results by the three methods 
 Parameters selected Criterion 

Clustering kf32, kf70, kf16, kf21, kf31, kf44, kf19 4.113 
Forward selection kf7, kf6, kf21, kf70, kf31, kf19, kf44 3.850 

kf32, kf70, kf16, kf21, kf31, kf44, kf19 4.113 
kf32, ka26, kf16, kf21, kf31, kf44, kf19 4.106 
kf32, kf70, kf16, kf21, kf31, kf44, kf18 4.088 
kf32, ka26, kf16, kf21, kf31, kf44, kf18 4.071 

Genetic algorithm 

kf32, kf70, kf6, kf21, kf31, kf44, kf18 4.064 
 
5 Conclusion 

A great number of parameters are involved in a large scale system. However, the effects of 
some parameters are every similar and these parameters can not be estimated simultaneously. 
Investigation of pairwise indistinguishable set is to uncover when the effect on the output 
produced by variations of parameters in a set can be compensated by change of one parameter in 
the set. Identification of the pairwise indistinguishable sets is very useful in parameter selection. 
Parameter selection is a combinatorial problem to optimize a criterion function of the set. 
Identification of the indistinguishable sets provides a ‘dimensional reduction’ technique to 
simplify the optimization problem. The search of all possible combinations of parameters is 
reduced to search of combinations of the representatives and the number of sets for enumeration 
is reduced so dramatically that an exhaustive search is feasible to find the solution. 
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