Utilizing the discrete element method the 3-dimensional flow of cohesionless particles in a cylindrical vessel agitated by a 4-blade impeller was studied. Instantaneous, averaged and fluctuating velocity fields show that the particle movement is governed by the angular motion of the blades. The granular bed deforms by forming heaps where the blades are present and valleys between blades passes. The presence of these heaps leads to the formation of a 3-dimensional recirculation zone in front of the blade, where particles flow upwards by the wall and downwards by the impeller shaft. This 3-D recirculation leads to enhanced mixing by promoting radial and vertical mixing. The particle's frictional characteristics are shown to strongly influence the flow structure and mixing kinetics within the mixer. At low friction coefficients the 3-D recirculation in front of the blade is not present reducing the convective mixing inside the mixer. Higher friction coefficients lead to an increase in granular temperature which is associated with an increase in diffusive mixing. Collisional stresses within the mixer showed periodic behavior indicating that the granular material compresses as the blade passes and dilates in between the blades. The long-time averages of the normal and shear stresses were found to vary with mixer height with maximum values near the bottom plate. Additionally, a strong dependence between the magnitude of the shear stresses and the friction coefficient of the particles was found. These stress tensor characteristics indicate that the granular flow in this bladed mixer occurs in the quasi-static regime.