Key to the economic viability of gasification/catalytic synthesis processes is the production of a syngas with low concentrations of products which interfere with the catalytic step, such as methane, tars and sulfur compounds. Developing an understanding of the formation of these species as a function of feedstock is critical for evaluating and optimizing gasification. In this study, steam gasification was conducted on a ten to twenty kilogram per hour (pilot) scale of mixed hardwoods, corn stover, switchgrass and wheat straw. Process conditions such as steam-to-biomass ratio and temperature were investigated and their effects upon product formation. Real-time measurements of gaseous products were gathered, including sulfur compounds. The chemical composition of the tars formed was monitored in real time using a Molecular Beam Mass Spectrometer (MBMS). The process and unit operations, operational lessons-learned, and results from the experiments as they relate to the formation of undesirable products will be discussed.