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Introduction

Significant research is being done in the field of lithium ion batteries for hybrid electric vehicles
and plug-in hybrid vehicles by different automakers. Various physics based models exist in literature that
describe in detail the initial performance and also the cycle life or storage issues. But the knowledge
from physics based models with respect to both performance and durability should be incorporated in
the vehicle level system model earlier in the design phase. The emphasis on this approach is increasing
as the paradigm is shifting to design for affordability. Incorporating physics based models in system
model is complicated due to different languages in which they are coded and also because of the slower
computation speed of the physics based models as numerical methods are involved. Hence a systematic
framework is necessary to approach this problem. Robust design through surrogate model
methodology is useful in this regard to develop simpler models without losing much of the fidelity and
they are easy to integrate in vehicle model. Response surface methodology is a key enabler for
surrogate models. This methodology allows one to explore the design space for multiple responses of
interest —capacity, power, specific energy, cycle life, etc. and determine the optimal settings by means
of a desirability function approach. Overall desirability can be obtained from the individual desirability
functions of the responses. This means a trade-off between multi- objectives is obtained. The robust
design provided by the surrogate model methodology is also less sensitive to uncertainties or noise
factors. Both physics based models or experimental data can be used to arrive at response models.
Experiments avert the need for assumptions associated with physics based models, whereas the latter is
needed for cases where historical or experimental data are unavailable.

In the current research, the surrogate model approach is introduced for analyzing performance
of lithium ion batteries. This can be extended in the future to include cycle and calendar life as well to
study degradation of batteries at system level.

Response Surface Methodology (RSM)

Even though the system models that are available currently have battery models as one of the
components, most of the battery models use look up tables for OCP or SOC values. The disadvantage of
look up tables is that they have limited scope in terms of data available, e.g., OCP data may not be
available at different temperatures. Another disadvantage is that the interpolation procedure used can
lead to unknown errors. Also, determination of SOC of a battery onboard a vehicle is difficult and is a
source of uncertainty. Simple battery models in current system models may be sensitive to such
uncertainties. Hence, there is need for a surrogate model based on RSM which facilitates a robust design



space solution insensitive to uncertainties. Discussion on RSM can be found elsewhere (1). The simple
response surface equation (RSE) is a quadratic equation based on Taylor series approximation.

Application of RSM for battery surrogate model

Lithium ion cell from Valence technology with rated capacity of 1.1 Ah (C rate) is chosen for the
experiments. The controllable factors chosen were temperature of operation and rate of discharge. It
should be noted as the experiment proceeds, there will be change in temperature of the battery,
especially at high rates of discharge and there will definitely be a temperature gradient within the
battery. In this way, the temperature of the battery is a noise factor (or uncontrollable factor). But for
the time being, constant temperature of operation of the battery is considered. Once a good RSE is
developed, one can add random distribution to the output to reflect these noise factors during analysis.
For each of the independent variable, three levels are chosen. A central composite design of
experiments is created and total of 9 runs were conducted using an Arbin battery cycler (BT-2000) and
HD-508 environmental chamber from Associated Environmental Systems. The design of experiments is
shown in Table 1. The CCD design gives the same number of runs as a full factorial in this case since
there are only two independent variables. All rates of discharge are denoted in reference to C rate.

Temperature | Rate of Discharge
(’C)
( C rates)
0 0.5
0 1.75
0 3
25 0.5
25 1.75
25 3
50 0.5
50 1.75
50 3

Tablel. CCD Design of Experiments



Results and Discussions

The discharge curves for the above 9 cases for Valence cell are given in Figure 1.
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Figure 1 Discharge curve of Valence 1.1 Ah lithium ion cell

Response Surfaces were created for the capacity obtained in the above runs as a function of
temperature and rates of discharge. The results are now analyzed using statistical goodness of fit tests.

Actual vs. Predicted Plot

Figure 2 gives the actual vs. predicted plot for the capacity (Ah). The R? value is 0.99. All data points lie
close to the Perfect Fit line (diagonal). But they don’t all seem to be distributed evenly and this might
occur when a single variable is the dominant factor. The mean of the response is also slightly shifted
upwards because of the uneven distribution. More cases could be run to check if this observation still

exists.



Figure 2 Actual vs.

Residual vs. Predicted Plot

Figure 3 gives the residual vs. predicted plot. There is no distinguishable pattern observed in the residual
by predicted plot. A good random distribution of the error would imply that it was fine to have
discarded the higher order terms and interactions from the Taylor series expansion for the assumed
model. But slight data clumping towards right corner is seen. This could again imply that single variable
is driving the response in the regions of interest. The total span of error is 10% of the minimum of the
predicted capacity values. Usually it is desirable to have this as low as 5% as a rule of thumb for validity
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Figure 3 Residual vs. Predicted plot of capacities (Ah) of Valence lithium ion cell

Model Fit Error (MFE)
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This statistic gives an idea of how well the model fits the data points in the Design of Experiments.
Ideally, it is desired that the error distribution resemble a normal distribution with mean zero and
standard deviation of one. Figure 4 gives the model fit error for the predicted capacities.

Error %

:.

Figure 4 Model Fit Error Distribution

As can be seen in Figure 4, the upper and lower bounds of the error are less than 5%. Usually, it is
desirable to minimize the bounds. The mean and standard deviation of the above distribution are 0.051
and 2.01 respectively. It is desirable to have mean approximately equal to zero (as obtained) and
standard deviation less than one. In the above distribution, if the outlier is neglected, then the standard
deviation reduces to 1.43 and the error bounds are also minimized to 2.3 and -1.3 % respectively. But
caution has to be applied while neglecting outliers to avoid significant correlation between the
independent variables. Usually, it is okay to neglect about 7-8% of the outliers. Since in this work there
were only nine cases to begin with, neglecting of outliers is avoided. The correlation between the
independent variables with all 9 runs is zero. It is necessary to try and fix the shortcomings in the
assumed model until this stage and get the goodness of fit statistics better before proceeding further.
But as a learning exercise, more in this methodology is presented here. A point to be noted above is that
there were fewer runs and hence normal distribution of the error within this small data set might be
slightly difficult.

Model Representation Error (MRE)

This statistic shows how well the assumed model predicts the actual response for the design settings not
used in the creation of model in the entire design range of interest. For this, random settings of the
independent variable are chosen and experiments performed. A subset of a Latin hypercube sample was
used to arrive at some of the cases below. Usually it is desired to have at least 20% of the original
number of runs to have a sufficient sampling of the space to check the MRE. The RSE developed above is
used to predict the responses and arrive at MRE by comparing it to the actual capacities.



Temperature (°C) Rate of
Discharge
( C rates)
6 1.07
11 2.03
18 3
22 0.74
50 0.5
0 1
0 2
25 1
25 2

Table 2 Random data for Model Representation Error Distribution

Figure 5 shows the MRE distribution. It can be seen that the lower error bound has increased as well as
the mean (-2.08) and standard deviation (3.63). Even though it is understandable to see an MRE with
poorer statistics than MFE, a good RSE will lead to a better MRE. It should also be noted that if the data
at zero degrees are removed from the above table, the mean and standard deviation of the MRE
distribution as well as the lower bound significantly reduce. This implies that the predictive capability of
the assumed model reduces at 0°C.

25

Error %
¢n

-7.5 1

044

-12.5 4
Figure5 Model Representation Error Distribution

Latin hypercube (LH) sampling is basically a space filling design and complements the central composite
design. In order to improve the assumed model, a space filling design could be used alongside CCD to



create the RSEs. As a first attempt, the extra cases in Table 2 were used alongside Table 1 to create the
RSEs and the goodness of fit statistics was observed. The statistics didn’t improve much. So higher order
terms could be employed or a proper LH design could be employed to arrive at a rigorous RSE.

Response Surface Equation (RSE)

Once a good RSE is obtained, it represents the meta model of the metrics considered as a function of
the variables. Figure 6 shows the response surface of capacity as a function of rate of discharge and
temperature.

Canacly

Figure 6 Response Surface of capacity of 1.1 Ah Valence lithium ion cell
Analysis of influence of the independent variables

Figure 7 shows the Pareto plot. This plot gives the relative influence of the variables and the interaction
between variables on the response, i.e. capacity. It can be seen that temperature has a significant effect
on the capacity.

Term t Ratio
Temperature(0,50) 17.63075
Temperature*Temperature -6.51896
Rate of discharge(0.5,3) -2.61147
Rate of discharge*Rate of discharge 1.89793
Temperature*Rate of discharge 1.61650

Figure 7 Pareto plot



The influence of the individual variables on the response can be viewed either in Figure 8 in a prediction
profiler or in Figure 9 in the Scatter plot matrix. This gives the change in capacity of the cell with respect
to temperature or rate of discharge alone while the other variable remains fixed at a value within the
range of interest. One can then obtain simulated responses using the RSEs created for, say 5000 runs, by
using a random uniform distribution on temperature as well as rate of discharge within the design
range. A random noise can also be added on the capacity values. In this case random noise with
standard deviation of 0.0349 is added to the responses. The resulting capacity distribution is shown on
the right most plot in Figure 8. The corresponding scatter plot matrix is given in Figure 9.
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Figure 8 Prediction Profiler
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Figure 9 Scatter Plot matrix
Desirability functions can also be used to arrive at optimal settings of operation to achieve the objective.
Suggestions for future work

The RSEs when used outside the design range, e.g., at -25°C or at rates lower than 0.5C (e.g. 0.1C) or
greater than 3C (e.g. 4C), give greater error. Hence in order to obtain good RSEs, one might have to
expand the design range. At the same time, if the design space is expanded too much, the central
composite design of experiments alone will not be sufficient to obtain good RSEs. It has to be coupled
with one of the space filling designs. Several other performance metrics like power, specific energy can
also be studied and multiple RSEs can be created. This methodology can also be extended to understand
the influence of variables like electrode thickness, porosity, etc. on the capacity by using physics based
models to obtain the responses that can be used to develop response surface equation. Finally, the RSM
can be extended to study degradation in batteries by having number of cycles or storage time as one of
the independent variables of interest. The interaction of temperature with cycle life and calendar life on
capacity will be of significance also.
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