We performed DEM (Discrete Element Method) simulations of the dry impregnation process with different nozzle configurations that distribute an aqueous solution into the catalyst support. A novel water transfer algorithm was implemented in the simulations to account for the actual distribution of water in the particle bed. We computed several parameters, which include the residence time distribution (time that the particles spend under the spraying zone), the extent of the dead zones (zones that do not receive any water during the impregnation process) and the spatial distribution of the sprayed water throughout the powder bed in different cut planes. Our results show that the residence time distribution of the particles in the spraying zone is not significantly affected when we vary the speed of the blender. For four, eight and ten revolutions the particles remain almost a similar amount of time in the spraying zone. The distribution of water is inhomogeneous across different planes parallel to rotation axis reflecting poor radial mixing typical of double cone blenders. When we increase the number of nozzles the extent of dead zones significantly reduces and 70 to 80 percent of particles show a level of saturation that exceeds 50 percent after ten revolutions. For all impregnator configurations the liquid is never distributed completely homogeneously throughout the powder bed. However, if we correctly manipulate the variables and the configuration of the spraying guns we can obtain a nearly homogeneous distribution.