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Abstract 
 

In this paper, a novel methodology of multi-scale analysis and control structure design is 
proposed for typical multi-scale biotechnological processes. This methodology combines the 
concepts of factorial design, multiprojection analysis and control relevant metric. The 
effectiveness of this methodology in handling multi-scale variables including micro-scale 
phenomena is demonstrated  using two examples, which are two-stage distributed feed 
(TSDF) extractive alcoholic fermentation and recycled micro-aerobic fermentation processes. 
In both examples, the control structure designs resulting from the proposed methodology 
shows superior robustness/performance than the arbitrarily chosen control structures. 
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1. INTRODUCTION 
 
 Most of the fundamentally important processes are multi-scale in nature where one of 
the most striking examples which have served the humanity since prebiblical time is 
biotechnological process (Knorr & Sinskey, 1985). Recent progress in biotechnological field 
has created tremendous amount of disparate data and information about many biological 
systems of interests. This disparate data and information are multi-scale in nature spanning 
across different time and length scales. Despite this progress, the realization of the potential 
benefits from this multi-scale data particularly in practical aspects remains a daunting task. 
This provides the challenges and opportunities which have become the subject of intensive 
research especially in the last few years. A unified framework which is capable to integrate all 
this data and information across different time and length scales is a vital aspect towards 
producing new insights and meaningful knowledge which then, could subsequently be used to 
improve bioreactor performance – the heart of biotechnological processes (Cooney, 1983). In 
this respect, one of the key enabling tools which could serve as platform for integrating this 
disparate data and knowledge is multi-scale modeling where recently, its application to 
complex biological processes has shown significant progress (Ayton et al., 2007). 
 Although the applications of multi-scale modeling and analysis have recently shown 
some progress in the performance improvement of biochemical processes, for examples 
(Teixeira et al. 2007; Bideaux et al., 2006; Galaktionov et al., 2002; Charbon & Swaminarayan, 
1998; Schwarzer & Peukert, 2005), the most prevalence approach currently adopted in the 
bioprocess improvement remains relying on the macroscopic models. These models are 
generally based on the unstructured kinetics i.e. formal macro-scale approach. In view of the 
recently growing competition in biochemical industry worldwide, the development of efficient 
process monitoring and control are considered as one of the key aspects in bioprocess 
improvement (Henson, 2006; Alford, 2006; Schügerl, 2001). Not withstanding this significance,  



the applications of advanced control methods which have been practiced extensively in 
chemical industries are still scarcely implemented in biological processes (Komives & Parker, 
2003).  
 Moreover, the extension of the advanced controller techniques to bioprocesses might 
not be straight forward owing to the different natures between chemical and biotechnological 
processes. One of the key differences between chemical and biochemical processes is that 
the former consists of large numbers of functionally diverse, and frequently multifunctional, 
sets of elements that interact selectively and nonlinearly, which produce coherent rather than 
complex behaviours as in the later (Kitano, 2002). In other words biological systems are finely 
tuned across multiple resolutions e.g. from genomic to metabolic resolution. Another important 
aspect in bioprocess control adopted so far is that, most of the research efforts have only been 
dedicated in the development of controller algorithms and only scarce reports are available on 
the control structure design (Nandong et al., 2008a).  
 In chemical industries, the choice of control structure design has been recognized as a 
factor that has far more important impact than the choice of controller algorithms on the plant 
dynamic performance (Arbel et al., 1996; Hovd & Skogestad, 1993; Morari et al., 1980). The 
tasks of designing control structure or strategy involve the selection of and pairings of suitable 
manipulated and measured variables. To date in bioprocess control design, the choice of 
controlled outputs and manipulated variables are generally predetermined from process 
knowledge and experience, for examples, substrate and dissolved oxygen concentrations are 
normally controlled owing to their well-known influences on the cellular metabolisms. The 
reason why this approach works well in bioprocess could be due to the relatively small number 
of available inputs and outputs (e.g. frequently only one bioreactor involved) as compared with 
the traditional chemical processes. Additionally, in bioprocess the control system is normally 
focused on bioreactor.  
 But credible studies indicate that many of the bioprocess improvements including the 
finding of innovative operations could be achieved by using multiple bioreactors rather than 
single large bioreactor (Dourado et al. 1987; Bayrock & Ingledew, 2001; Chaabane et al., 
2006; Xiu et al., 2002). Although increasing the number of bioreactors would not increase 
dramatically the number of inputs, the number of total bioreactors outputs generally multiplied 
by the number of bioreactors i.e. two bioreactors could have twice the number of outputs as 
single bioreactor. Thus, whenever multiple bioreactors are used, the engineers would then 
have to face more challenges in term of selecting the most suitable controlled outputs.  
Furthermore, an interesting result from recent studies (Nandong et al., 2007a; Nandong et al., 
2008a) show that the implementation of appropriate control structure based on multi-scale 
analysis could enable the control of nonlinear system using only the traditional linear PID-type 
controllers. Thus, this reveals that by adopting an appropriate control structure design based 
on multi-scale concept could lead to an interesting, and yet yields practical alternative to 
applying complex advanced control strategies. Additionally, application of simple PID 
controllers is advantageous over that of complex advanced controller algorithms owing to its 
robustness and ease of maintenance and operations.  
 Presently, there is no control structure design methodology which has been reported in 
literature which is suitable for the multi-scale processes that include micro-scale phenomena 
i.e. most of the control structure methodologies presented to date are suitable for the macro-
scale variables. In this paper, the key aim is to present a proposed methodology of multi-scale 
analysis and control structure design for multi-scale biotechnological processes (see Nandong 
et al., 2008a). The effectiveness of this proposed methodology is demonstrated on two 
examples, which are (1) two-stage distributed feed (TSDF) continuous extractive alcoholic 



fermentation, and (2) recycled micro-aerobic fermentation system. It would be shown that 
based on the proposed methodology, one could find a control strategy that could be efficiently 
used to control a nonlinear multi-scale system using only simple linear PID controllers. 
Furthermore, the simulation study shows that the control structure design based on the 
proposed methodology has superior robustness and performance than that of the arbitrary 
one. 
 
  

2. METHDOLOGY 
 
 Due to the space limitation, only brief description of the proposed methodology is 
presented. The details about this methodology are presented in Nandong et al. (2008a). The 
key idea underlying the proposed methodology is to identify the critical variables which are 
strongly correlated with the specified plant performance measures. The foremost performance 
measure which is to be achieved by the resulting control structure design is to minimize the 
nonlinear excitation in the face of external disturbance occurrence. If the nonlinear excitation is 
small then this should justify the use of simple linear PID-type controller. And of course other 
important performance measures such as yield and productivity must also be achieved or at 
least be maintained closed at the desired values. But, it is expected that to be able to control a 
system such that steady-sate performance measures (i.e. yield and productivity) could be 
maintained closed at desired values (or minimized variability), it is crucial that the system is 
easily control (i.e. has favorable dynamic operability). Thus this is the reason why finding the 
control structure which could minimize the nonlinear excitation when external disturbance 
occurs is the foremost objective to be fulfilled (i.e. dynamic performance measure) before 
meeting steady-state performance measures. 
 Figure 1 shows the mapping concept from the key or critical variables to the 
performance measures. One way to do this mapping is by adopting the technique of 
multiprojection analysis e.g. Principal Component Analysis (PCA). In the PCA, the objective is 
to reduce the large number of interacting variables in a dataset into smaller group of key 
variables i.e. dimensional reduction. As applied to the control structure analysis as illustrated 
by Figure 1 below, the PCA analysis is used to identify the critical variables that strongly 
correlate with the performance measures. This mapping could lead to three general cases as: 

1. Single Variable - Single Performance (SVSP) Mapping – One variable/parameter is 
strongly correlated with a certain performance measure. 

2. Single Variable-Multiple Performances (SVMP) Mapping – One variable/parameter is 
strongly correlated with more than one performance measures. 

3. Multiple Variables-Multiple Performance (MVMP) Mapping – Multiple 
variables/parameters are strongly correlated with multiple performance measures – cross 
mapping exists. 

 The complexity of the control structure design problem depends on the cases above, for 
example, if the mapping results in case 1, then the control structure problem is expected to be 
relatively simple as compared with case 2 or 3. But in most practical applications, case 2 and 3 
are expected to be common. Additionally, in view that the control structure also depends on 
the operating level, thus it is possible that there is no proper control structure exists at all i.e. 
there is no critical variables that map strongly to the specified performance measures as 
reported in Nandong et al. (2007b). The methodology for finding the operating conditions with  



favorable dynamic operability could be found in this paper. The interested readers could refer 
to Kourti and MacGregor (1995) for background on PCA and Vinnicombe (2001) for v-gap 
metric concept used in this methodology. 
 

 
Algorithm 
 
 The proposed control structure design methodology in this paper could be summarized 
as following: 
Step 1 – Generation of Operating Regimes: Select a set of nominal operating levels, and for 
each operating level apply step inputs perturbations using a factorial design concept. 
Step 2 – Generation of Linear Model Sets: Linearize the nonlinear process model at each 
nominal operating level and at the corresponding perturbed levels.  
Step 3 – Generation of Quality Variables: Determine the performance measures, for 
examples, productivity, yield, etc at nominal and perturbed operating levels. Also, compute the 
nonlinearity excitation as measured by v-gap value between the nominal and perturbed levels.  
Step 4 – Mapping of Critical Variables to Performance Measures: Gather and combine all 
the generated data on the process parameters, input-output variables and the computed 
performance measures (or quality variables) in Step 3 to form a dataset, which is to  be used 
in the PCA (multiprojection) analysis. 
Step 5 – Control Structure Design: There are three main tasks involved which are the 
selection of controlled variables, manipulated variables and controller pairings.  
  
 

3. RESULTS AND DISCUSSIONS 
 
 The application of the proposed methodology to multi-scale biotechnological processes 
is demonstrated using two fermentation examples. The first example which is on TSDF 
alcoholic fermentation process is taken from the work reported in Nandong et al. (2008a). 
Meanwhile the multi-scale model describing the recycled micro-aerobic fermentation process is 
taken from Nandong et al. (2008b). 

 
 

Figure 1 - Schematic of mapping from critical variables to performance measures 



 Also note that, in these examples only linear PI controllers are used. As for the case of 
multi-scale control strategy, the micro-scale controller is not specified but it is assumed that 
this controller could maintain the micro-scale output within certain range. 
3.1 Example 1: Two-stage Distributed Feed (TSDF) Alcoholic Fermentation Process 
 
 Figure 2 shows the schematic of TSDF continuous alcoholic fermentation processes. 
The key feature of this design is that the fresh feed is distributed between the two bioreactors 
that are in series (R1 and R2) according to ratio SR (fraction of fresh feed that enters the R1). 
The details about this process could be found in Nandong et al. (2008). Table 1 shows the 
variables forming the dataset. Note that there are 16 perturbed levels (P1, P2…P16) around 
the nominal level P0 based on the four inputs (r, R, SR and So).  

 

 
 There are 26 variables in total which are considered in the PCA analysis as following: 

 
 

Figure 2 – Schematic of TSDF continuous alcoholic fermentation process 

Table 1 – Variables forming the dataset for PCA analysis 
Variable Description Variable Description 
Yield Ethanol yield S1 Substrate concentration in R1 
Prod Ethanol productivity S2 Substrate concentration in R2 
Conv Substrate conversion T1 Temperature in R1 
r Flash recycle ratio T2 Temperature in R2 
R Cell recycle ratio P1 Ethanol concentration in R1 
SR Split feed ratio P2 Ethanol concentration in R2 
So Fresh substrate concentration Xv1 Viable cell concentration in R1 
L1 Liquid level in R1 Xv2 Viable cell concentration in R2 
L2 Liquid level in R2 v-gap1 v-gap of R1 
Rp1 Rate ethanol production in R1 v-gap2 v-gap of combined R1 and R2 
Rp2 Rate ethanol production in R2 Rx1 Rate cell production in R1 
Rs1 Rate substrate consumption in R1 Rx2 Rate cell production in R2 
Rs2 Rate substrate consumption in R2   
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 In this case, there are 5 performance measures, 4 macro-scale inputs, 10 macro-scale 
outputs and 6 macro-scale parameters. These parameters could be viewed as the outputs of 
micro-scale inputs (see Nandong et al., 2007a). Thus in the dataset there is no direct micro-
scale variables being considered i.e. only indirectly via the parameters. Table 2 shows some of 
the selected values from the original dataset for few observations. Notice that for observation 
#3 at P2, the value of v-gap2 is the largest. Thus it is interesting to know whether this will lead 
to outlier or not in the PCA analysis latter. And if this becomes outlier, then the question is 
whether v-gap2 has any contribution to this outlier. 
 

 
 

 

Table 2 – Selected values from the complete dataset 
No Level v-gap2 S1 

(kg/m3) 
S2 
(kg/m3) 

Yield (%) Prod 
(kg/m3.hr) 

Conv 
(%) 

1 P0 0 17.35 1.60 89.90 14.83 98.49 
2 P1 0.980 43.18 20.31 75.09 18.51 79.39 
3 P2 0.995 99.17 79.58 45.42 16.73 45.87 
5 P4 0.980 73.85 38.85 67.41 21.15 75.44 
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Figure 3- Plot of PC for two principal components PC1 and PC2 of the complete dataset 



 From Figure 3, the outliers #2 and #3 (at P1 and P2 respectively) could be due to 14 
variables which are v-gap2, T1, L1, L2, r, R, SR, Yield, Conv, S1, S2, Rx2, Rp2, Rs2 (i.e. these 
variables occupy 2nd and 4th quadrants. Other variables which occupy 1st and 3rd quadrants 
could be responsible for other outliers i.e. outlier #14, #15 and #16. Since the main objective in 
this example is to obtain the critical variables that strongly correlate with nonlinear excitation 
(i.e. v-gap), thus further analysis will be focused on the variables that responsible for outlier #3 
where v-gap2 could be one of the contributor to this outlier. Therefore, to identify which 
variables that really have strong correlation with the outlier #3, the original dataset is reduced 
to 14 variables and another PCA analysis is performed on this first reduced dataset. 
 The PCA analysis performed on this first reduced dataset indicates that there are 7 
variables that may have strong correlations with outlier #3, which are v-gap2, S1, S2, SR, T1, 
Yield and Conv. However, it is still rather unclear at this stage which variable/s actually has 
dominant contribution to the outlier #3. More importantly, could it be that v-gap2 has strong 
correlation with this outlier. Thus, the dataset is further reduced to only 7 variables (v-gap2, S1, 
S2, SR, T1, Yield and Conv). Another PCA analysis is performed on this second reduced 
dataset.  
 

 
 Figure 4 shows the plot of two principal components from this second reduced dataset. 
This plot indicates that the outlier #3 is positively correlated with S1, S2 and v-gap2 and is 
negatively correlated with Conv and Yield.  Moreover, this mapping analysis reveals two critical 
variables which are S1 and S2 that strongly correlate with the performance measures, which 
are v-gap2, Yield and Conv. Because S1 and S2 are positively correlated with v-gap2 (in the 
same quadrant), thus to reduce the nonlinear excitation (i.e. as measure by v-gap) the values 
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Figure 4 - Plot of PC score and loading for PC1 and PC2 of the second reduced dataset 



of S1 and S2 must be reduced. Also in this example the mapping results in case 3 i.e. Multiple 
Variables-Multiple Performance (MVMP). 
 Now the next question is whether it is necessary to control both S1 and S2? Because 
they are positively correlated, this implies that if one of these variables is controlled then this 
would indirectly control another variable. So in this case S2 is selected as the controlled 
variable. Another variable to be controlled is liquid level in bioreactor 2 (i.e. L2). Two inputs 
which are chosen as manipulated variables are r and R because these inputs have strong 
cause-and-effect relationship with the outputs i.e. high process gains. This control structure is 
called S-L structure. As a benchmark, another arbitrary control structure uses viable cell 
concentration in bioreactor 2 (Xv2) and ethanol concentration in bioreactor 2 (P2) as the 
controlled variables. In this control structure, r and R are also used as manipulated variables. 
This arbitrary control structure is called Xv-P structure. Note that in both structures, only PI 
controllers are used and tunings are based on linearized model at nominal operating level (P0) 
using Ziegler-Nichols formula. 
 

 
 Figure 5 shows the closed-loop responses of the two control structures when subject to 
step disturbance in fresh substrate concentration (So) of 60 kg/m3. For the S-L control 
structure, note that the uncontrolled Xv2 and P2 show significant deviations from the nominal 
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Figure 5 – Response to step change ΔSo = 60 kg/m3: nominal So = 170 kg/m3 



value and yet the closed-loop responses in S2 and L2 are still stable and faster than that of 
arbitrary Xv-P control structure. It is interesting to note that the Xv-P strategy is unstable when 
subject to step decrease in So by 60 kg/m3. However S-L strategy remains stable. For Xv-P 
structure, under this disturbance it seems that S2 increases sharply (result not shown). 
Because S2 is positively correlated with v-gap2, sharp increase in S2 would lead to increase in 
nonlinear excitation thereby causing severe performance degradation to the linear control 
system – hence leading to instability. Meanwhile, under S-L control strategy the value of S2 is 
prevented from drifting from the nominal value. Consequently this prevents the severe 
nonlinear excitation. 

 
 Figure 6 displays the impact of step disturbance in So of ±60 kg/m3 on the steady state 
performances (yield and productivity). Notice that the S-L control strategy is able to maintain 
the yield closed to the nominal value (small steady-state offset). On the other hand, Xv-P 
strategy fails to remains stable when subject to -60kg/m3 in So. For S-L strategy the ability of 
the control structure to have good impact on yield is expected since the S2 is negatively 
correlated with this performance measure. Thus controlling S2 is not only essential to prevent 
severe nonlinear excitation but also necessary to keep yield at nominal value. However, there 
is no clear advantage of S-L structure (other than it is stable) over Xv-P strategy for the 
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Figure 6 – Impact of ΔSo = ±60 kg/m3 on yield and productivity: nominal So = 170 kg/m3 



productivity i.e. large offset of yield for S-L structure. Again this could be expected because 
neither S2 nor L2 is strongly correlated with productivity. So, to control this productivity 
measure, one needs to find other critical variable/s that correlates well with this performance 
but this is not done in this work. 
 
 
3.2 Example 2 – Recycled Micro-aerobic Fermentation System 
 
 The multi-scale model of the recycled micro-aerobic fermentation system used in this 
example is taken from Nandong et al. (2008b). Table 3 shows the variables forming the 
dataset used in the PCA analysis. There are 20 variables in total which are considered in this 
PCA analysis as following: 
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Note that U and Y are multi-scale in nature i.e. GlcE is macro-scale output while G6P, PYR 
and ALDE are micro-scale outputs or intracellular metabolite concentrations. It is important to 
point out in this dataset there is no parameter i.e. both macro- and micro-scale variables are 
treated explicitly. Of course, one could also include the parameters such as specific growth 
and product formation rates but these parameters are calculated directly by the micro-scale 
system. 
 

 

 
 Table 4 displays selected values from the complete dataset for 4 observations only. An 
interesting observation is that at P13 the value of v-gap (Ma gap) is abnormally large equals to 
0.707 compared with at other perturbed levels (very small). PCA analysis is performed and the 

Table 3 – Variables forming the dataset used in PCA analysis 
Variable Description Variable Description 

Ma gap v-gap metric Xa Fraction of active cells 
So Inlet glucose concentration GlcC Intracellular glucose concentration 

ADP Adenosine diphosphate G6P Glucose-6-phosphate 
ATP Adenosine triphosphate F6P Fructose-6-phosphate 

NADH Nicotinamide adenine dinucleotide FBP Fructose-1,6-phosphate 
GlcE Extracellular glucose concentration DHAP Dihydroxyacetone phosphate 
Gly Extracellular glycerol concentration GAP Glyceraldehyde-3-phosphate 
Ace Extracellular acetate concentration   PEP Phosphoenol pyruvate 

EtOH Extracellular ethanol concentration PYR Pyruvate 
Cx Total cells concentration ALDE Acetaldehyde 

Table 4 – Selected values from complete dataset 
No Level Ma gap Ace 

(g/m3) 
G6P 
(mM) 

F6P 
(mM) 

PYR 
(mM) 

ALDE 
(mM) 

1 P0 0 85.62 3.6883 0.6949 6.5833 0.0358 
11 P10 0.0002 87.69 3.5608 0.6680 8.7191 0.0369 
14 P13 0.7072 104.93 3.5907 0.6744 8.4752 0.0473 
15 P14 0.0002 87.20 3.8174 0.7220 5.1704 0.0367 



analysis shows that there are 9 variables which could significantly correlate with the outlier #14 
(at P13) that are Glc, PYR, Ace, ALDE, Ma gap, G6P, F6P, ATP and PEP. To clearly identify 
the key variables, the original dataset is reduced to these 9 variables and second PCA 
analysis is performed. The plot of the two principal components which describe about 90% of 
the total variances in the reduced dataset is shown in Figure 7. From this plot, one can 
conclude that there are two critical variables which positively correlate with Ma gap which are 
Ace and ALDE. 

 
 Both variables positively correlate with Ace and ALDE. So, the implication to control 
structure design is that whether both of these critical variables need to be controlled or not in 
order to prevent large nonlinear excitation in the face of disturbance occurrence. Recall in the 
previous example, if two critical variables are positively correlated then only one need to be 
controlled because this also lead to indirectly control another critical variable. But this strategy 
seems to work if both critical variables are of similar scale i.e. previously both variables are 
macro-scale. The question now, does this strategy works if the critical variables are of different 
scales as in this example. 
 To evaluate the effectiveness of applying the strategy which is adopted in example 1, 
two MIMO control structures would be proposed: 
Single-scale Control (SSC) Strategy 1 – Only Ace is controlled while the micro-scale variable 
ALDE is left uncontrolled. In addition the EtOH is selected as another controlled variable. 
Multi-scale Control (MSC) Strategy – Both of the critical variables are controlled in addition to 
controlling the EtOH.  
 Another macro-scale control structure which adopts GlcE and EtOH as controlled 
variables is proposed as a benchmark – called SSC strategy 2. Also, note that all macro-scale 
controllers are PI-type where the tuning is based on the linearized model at the nominal 
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Figure 7 - PCA plot of reduced dataset for two major principal components 



operating level using the Ziegler-Nichols open-loop formula. For the MSC strategy, the micro-
scale controller is simply assumed to be able to keep the ALDE within ±0.0002 mM. The 
performance is assessed based on the EtOH closed-loop response when subject to unit step 
disturbance in cellular ATP concentration. 
 
  

 
 From Figure 8, it shows that multi-scale control (MSC) strategy outperforms the two 
macro-scale (or single-scale) strategies i.e. much smaller overshoot and faster settling time. 
For the case of single-scale control (SSC) strategy 1, it seems that the advantage to control 
Ace (i.e. one of the critical variables) is small as compared to the arbitrary control structure that 
controls GlcE and EtOH (SSC strategy 2).  
 Thus in contrary to the previous example, it is important to control both critical variables 
which are actually multi-scale in terms of length and time resolution i.e. multi-scale control 
strategy required in this example to have significance improvement in control performance. 
Note that, the offset in MSC strategy and SSC strategy 1 could be due to the lack of integral 
action and no controller retuning has been considered in this example. 
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Figure 8 – Closed loop response of EtOH to pulse disturbance in ATP at time 2000s 
(duration 1000s, amplitude 1) for three different control strategies 



CONCLUSIONS 
 
 The effectiveness of proposed methodology in handling multi-scale processes has been 
confirmed using extractive fermentation and recycled micro-aerobic fermentation systems. The 
key novelty in this approach is its ability to find which variables among the multi-scale outputs 
which directly or strongly correlated with the specified performance measures and must be 
controlled. Essential to this methodology is to find which variables that have strong impacts on 
the nonlinear excitation i.e. v-gap metric. Controlling these variables is vital to ensure good 
dynamic operability so that it can justify the use of simple linear PID-type controllers for 
strongly nonlinear system. If two critical variables exist for certain performance measure/s, 
then only one of these variables need to be controlled if they are both positively correlated and 
if both are also of similar macro-scale type. On the other hand, if two critical variables are 
multi-scale than both variables must be controlled i.e. as shown in the example 2. Thus this 
would lead to full multi-scale control (MSC) strategy.  
 The key limitation of adopting MSC strategy is the lack of suitable micro-scale 
manipulated variables that could be used to control the micro-scale outputs directly. 
Additionally, the lack of currently suitable sensors to measure the micro-scale outputs online is 
another major hindrance in the adoption of MSC strategy. However, these obstacles would 
soon be resolved by the rapid advances in (1) cellular design methodology (see Kaznessis, 
2006), (2) measurement and sampling technologies, and (3) multi-scale modeling and 
computation. 
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