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The analysis of diffusion through disordered structures is a problem of widespread 
interest to many areas of science and engineering, and many of the most successful 
theories in this area have used percolation concepts. In our presentation we will 
discuss a novel approach for analyzing the problem of diffusion through 
heterogeneous network structures exhibiting dynamical disorder. Potential areas of 
application of this work include a variety of problems including analyzing ionic 
conduction in polymers, electron-hole recombination in amorphous semiconductors, 
polymer gelation, turbulent diffusion, the efficacy of corrosion-resistant metal-organic 
coatings, and ionic conductance through supercritical microemulsion mixtures. 
 

We describe how we use the Ising model paradigm, in conjunction with kinetic Monte 
Carlo simulations, for generating dynamical network configurations that are 
consistent with Kawasaki lattice dynamics (i.e. constant conducting-site density). At 
any point during the simulations conducting-site pathways (with density) are taken to 
be given by the network of up spins, using the Ising terminology, with the non-
conducting-sites represented by the network of down spins. 
 

In addition to the simulation results we provide a theoretical analysis of the problem 
by firstly providing a rationale as to why we partition the net displacement of the 
RWs throughout the network into two terms representing: (1) the contribution to 
transport by ‘hopping' through nearest neighbor conducting sites (the so-called 
‘percolation' mechanism) and (2) the self-diffusion of the site itself on which the RW 
finds itself at any given point in time, respectively. The ‘percolation- diffusion' 
component exhibits non-trivial scaling behavior, with a new scaling exponent that 
describes the cage trapping time of the RWs in conducting site clusters. We show how 
the value of this exponent can be found from computer simulation results and 
compare our results to conductance measurements in supercritical microemulsions 
and recently published diffusion data taken in dense colloidal suspensions. 
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INTRODUCTION 
We study the problem of diffusion through network structures exhibiting 

dynamic disorder, using the Ising model paradigm to generate evolving network 
configurations. Diffusion is studied using blind random walkers (RW). Furthermore, 
we partitioned the net displacement of the RWs throughout the network into two 
terms. These represent the contributions of transport through neighboring conducting 
sites and the self-diffusion of the site itself on which the RW finds itself at any given 
point in time. 
 

SIMULATION APPROACH 
Dynamic network structures were found with kinetic Monte Carlo (KMC) 

simulations, consistent with Kawasaki dynamics (i.e. constant conducting-site density) 
[1,2,3,4], on Ising lattice models [4,5] . At any point during the simulations 
conducting-site pathways (with density p) are taken to be given by the network of up 
spins, using the Ising terminology, with the non-conducting-sites represented by the 
down spins. The thermodynamic properties of this system are well established in 

terms of the reduced Ising lattice temperature
cT

T , where T is the system temperature 

and in 2d, for example, 
B

c k
T

44.0
Γ

=  is the critical temperature in which Bk is 

Boltzmann's constant and Γ the spin (site)-spin (site) coupling parameter [6,7] . 
 

Given a lattice of size LL×  we pre-equilibrate the system by doing a number 
of Monte Carlo Steps (MCS), where a MCS consists of a complete sweep of spin 
exchanges, i.e. 2L  updates. In addition to the ‘’usual’’ Ising parameters another 
feature of our simulation model is the ability to update only a fraction of the 
conducting sites during any step of the simulation. 

 After pre-equilibration we perform the diffusion simulations as follows: a RW 
is placed on a randomly selected conducting site and one of its neighboring sites 
selected randomly. If the selected site is a conducting site the RW moves to it 
otherwise the RW remains fixed at its current position. The number of RW steps 
attempted between consecutive structure updates is defined by the symbol wn  and the 
fraction of conducting sites updated per lattice sweep by q . Thus, the number of 
conducting sites updated each lattice sweep is pqLN R

2= . Furthermore, we define 
characteristic time constants for the RW and structure evolution dynamics by the 
variables wτ  and RT  respectively. It follows in straightforward fashion that 1~ −qTR  

and 1~ −
ww nτ  with wn  normalized to the value one. Therefore, )(qTR  represents the 

relative time scales of structure and RW dynamics.     
 
RESULTS 

Given these results we then simulated diffusion in networks at different values 
of temperature and density p starting with a system at the random percolation limit, 
the results of which are presented in figure 1. In figure 1 (top) we show the overall 
RW mean square displacement with the respective ‘component part’ transport 
contributions shown in figure 1 (middle) (self –diffusion) and figure 1 (bottom) 
(neighbor hopping).  Quite distinctive behavior is observed in these results. The self-
diffusion contribution follows regular diffusion behavior, while the neighbor hopping 
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and overall trajectories show three distinctive modalities: short, intermediate and 
asymptotically long times. At short times we observe an increase in diffusion that 
quickly leads to a plateau region, during which time significant diffusion slow-down 
occurs. Here the RW is trapped within its initial cluster while at long-times the system 
seems to approach a quasi-equilibrium state in which we find regular diffusion 
behavior i.e.  
 αttr ~)(2  (1) 

with 1α = . We observed similar qualitative features in finite temperature simulations.  
These results were all suggestive of systems in which scaling ideas might play a 
useful role in collapsing the simulation data into a “universal” curve.  

We now discuss this and evaluate a scaling hypothesis with extensive 
simulation data, in both uncorrelated as well as correlated network structures. 
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Figure 1: (top) Overall mean square displacement at the limit T →∞ , (middle) 
Self-diffusion contribution to overall mean square displacement at the limit 
T →∞ , and (bottom) Percolation (neighbor hopping)  contribution to overall 
mean square displacement at the limit T →∞  
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The overall diffusion behavior seen in these figures is suggestive of a system 
in which a scaling analysis might play a useful role in collapsing the simulation data 
into a “universal” curve and in figure 2 we show results using the scaling equations 
given by Chen et al. [8]. The scaling results seem to capture the physics of diffusion 
in this system in a satisfactory way. 
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Figure 2: Scaling results for diffusion in the network.   
 
THEORETICAL APPROACH 

Fixed ,  ( )RT T q  
We first analyze system behavior at fixed and ( )RT T q with cp p≤ . For the most 
interesting case involving the slow network re-arrangement regime we expect the 
plateau height R at short times to be constant and given by 
 )2(2 )(~ βν −−− ppR c . (2) 

We define a plateau crossover time xt  in our system to be the time for the trapped 
random walker to leave the original cluster by either splitting off or the hopping to 
another new cluster which came in contact.  By assuming the scaling relation relations 
between the crossover time and the distance to the percolation threshold, we have 
 z

cx ppt )(~ −  (3) 

with z a new scaling exponent. Above xt ,  cp p∀ < we expect regular diffusion so that  
 tppr s

c
−− )(~2 . (4) 

A scaling ansatz [9] that incorporates these results is given by 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− −

x

s
c t

tTpptr )(~2  (5) 
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with the scaling function ( )T x defined such that the mean square displacement 
approaches a plateau at the short time limited 1~)( −xxT  when 0x →  and the mean 
square displacement approaches the regular diffusion at the long time 
limit ( )T x → constant, when x →∞  and 2s ν β≡ − .Here the scaling relation does not 
hold for the time μνβ −−−< 2)( ppt c , which is the crossover time from subdiffusive to 
plateau region. 

This form of the scaling function ensures that the height of the plateau is 
independent of t and gives 
 )2( βν −+= zs  (6) 

Note that it has been argued elsewhere that in slow dynamic percolation systems 
2s ν β= −  [9] so the exponent z defined here represents a deviation from this 

viewpoint.  
 

Fixed ( ),  varying  RT T q  
For the systems vary in different rearrangement time we postulate that the cross over 
time is proportional to the system rearrangement time to power x, 
 x

Rx Tt −~  (7) 

and at the long time limit, the mean square displacement also scales inverse 
proportionally to the power y, since the slower the rearrangement (longer RT  ) the 
lower the mean square displacement is 

 t
T

r
y

R
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ 1~2 . (8) 

Following the approach used in the previous section we get that 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

R

y

R T
tF

T
r 11~2  (9) 

At the plateau, the cluster height is again considered to be independent of both t and q, 
which is the case if the scaling function ( ) 1~ −aaF  for 1~a and yx = . In the slow 
re-arrangement regime we therefore find that 1== yx . Combing both of these results, 
for the case when both p and ( )RT q  can vary, leads to the scaling result 

 ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− −

x

s
c

R t
tQppt

T
r 1~2 . (10) 

Since 

 ( ) R
z

cx Tppt −~ , (11) 

we thus arrive at a complete scaling function explicitly written as follows, 
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 ( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−− −− z

c
R

s
c

R

pp
T
tQppt

T
r 1~2 . (12) 

The question arises as how to find a value for the exponent z. The simplest way would 
be to find it from simulation results for RW displacement with time, at various values 
of cp p− , and fit these results to the scaling function shown in equation (12).   
 
COMPARISON TO EXPERIMENTS 
 
In figure 3 we show these results for scaled diffusion coefficients at various 
conducting site densities, and temperatures, near the static percolation point in this 2d 
network. The simulation results shown in figure 3 are for a 2d system, however, we 
show that their qualitative agreement with experimental conductivity data taken in a 
supercritical fluid microemulsion mixture at 35 C is very striking [10,11]. In future 
work we propose extending this to 3d simulations where experimental data 
conductivity are available.  
 

10-4

10-3

10-2

10-1

100

10-3 10-2 10-1 100

D

|φc-φ|

TR=1e4 
T=∞

T=2Tc
T=1.33Tc

-4

-3.5

-3

-2.5

-2

-1.5

-3 -2.5 -2 -1.5 -1 -0.5

lo
g 

(κ
S

-1
m

)

log(φ-φp)

"blattner.dat"

Figure 3: Left graph shows our 2d simulation results of diffusion coefficient 
scaling at various values of T  and φ , while the right figure represents data in 
a supercritical fluid microemulsion [10].  

 
In any computational investigation of the dynamic disorder problem we need 

to be able to systematically generate structures through which diffusion/conductance 
occurs. In one set of simulations, in annealing lattice networks, we propose to use 
kinetic Monte Carlo (KMC) simulations in Ising lattices where temperature will allow 
us to control the degree of cooperative dynamical correlations between the elements 
of the conducting network structure itself. For example, we might expect to see 
transport processes in such systems follow, broadly speaking, a ‘trap-and-release’ 
mechanism, a consequence of diffusive particle trapping by surrounding, non-
conducting structures, followed by further mobility as the overall conducting network 
rearranges itself into more favorable configurations for diffusion/conductance to 
occur. In other related simulations, where self-trapping dynamics are important, we 
will use KMC simulations with binary (small-large particle) continuum models [13] 
to emulate structures where a tagged (small) particle’s mobility is hindered by 
surrounding cage-like structures, whose re-arrangements are key to the tagged 
particles’ further mobility (some experimental data, relevant to this project, that 
displays such features in a self-trapping colloidal suspension are shown in figure 4 
[12]). 
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Figure 4: Experimental mean squared displacements of a diffusing particle in 
a dense colloidal suspension showing plateau (i.e. trap) regions [12].     

 
CONCLUSIONS 
Our simulation model shows a rich variety of novel diffusion behavior showing three 
distinctive diffusion regions: short, intermediate and asymptotically long- time 
transport regimes. Based upon these observations we used previously postulated 
scaling functions for diffusion in this system which appeared to universalize the 
behavior, at both the random percolation limit as well as at finite temperatures (the 
correlated problem).  This first study suggest that the computer model presented here 
shows potential for being very useful for studying basic phenomena related to 
diffusion in correlated network structures like ion transport through supercritical 
microemulsions. 
 
BIBLIOGRAPHY 
[1] N. Metropolis, A. W. Rosenbluth, M. Rosenbluth, et al.,Equation of State 

Calculations by Very Fast Computing Machines J.Chem.Phys. 21, 1087 
(1953). 

[2] E. H. Chimowitz, Introduction to Critical Phenomena in Fluids (Oxford 
University Press, Oxford, 2005). 

[3] P. C. Hohenberg and B. I. Halperin,Theory of Dynamic Critical Phenomena 
Reviews of Modern Physics 49, 435 (1977). 

[4] S. De, S. Teitel, Y. Shapir, et al.,Monte Carlo simulation of Fickian diffusion 
in the critical region J.Chem.Phys. 116, 3012 (2002). 

[5] K. Binder, in Topics in Current Physics (Springer-Verlag, Berlin, 1986), Vol. 
7. 

[6] H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena 
(Oxford University Press, Oxford, 1971). 

[7] A. M. Ferrenberg and D. P. Landau, Phys.Rev.B 44, 5081 (1991). 
[8]  C. L. Chen, Y. Shapir, and E. H. Chimowitz,Diffusion in the dynamic Ising 

system: Simulation and scaling Chemical Physics Letters 449, 236 (2007). 
[10]  C. Blattner, J. Bittner, G. Schmeer, et al.,Electrical conductivity of reverse 

micelles in supercritical carbon dioxide Phys.Chem.Chem.Phys. 4, 1921 
(2002). 



 8

[11]  D. ben-Avraham and S. Havlin, Diffusion and Reactions in Fractals and 
Disordered Systems (Cambridge University Press, Cambridge, 2000). 

[12] E. R. Weeks and D. A. Weitz,Properties of cage rearrangements observed near 
the colloidal glass transition Physical Review Letters 89 (2002). 

[13] J. Potoff and A. Z. Panagiotopoulos,Critical point and phase behavior of the 
pure fluid and a Lennard-Jones mixture Journal of Chemical Physics 109, 
10914 (1998). 


