In this work, two MDH active site models are considered to test possible methanol oxidation mechanisms based on the exposed residues methanol molecules face upon approaching the MDH active site through the enzyme binding pocket. Density Functional Theory calculations are performed using the DMOL3 module of the Materials Studio software to investigate reaction pathways. Energy barriers are calculated in gas as well as implicit and explicit solvent (water) phases. Additionally, the effects of enzyme environment on methanol oxidation are explored by adding representative portions of cytochrome cL, the MDH natural electron mediator, to the MDH active site models.
1. Ghosh, M., C. Anthony, K. Harlas, M.G. Goodwin, and C.C.F. Blake, The Refined Structure of the Quinoprotein Methanol Dehydrogenase from Methylobacterium Extorquens at 1.94 Å. Structure (London), 1995. 3: p. 1771-1787.
2. Afolabi, P.R., M. F., K. Amaratunga, O. Majekodunmi, S.L. Dales, R. Gill, D. Thompson, J.B. Cooper, S.P. Wood, P.M. Goodwin, and C. Anthony, Site-Directed Mutagenesis and X-Ray Crystallography of the PQQ-Containing Quinoprotein Methanol Dehydrogenase and Its Electron Acceptor, Cytochrome CL. Biochem., 2001. 40: p. 9799-9809.
3. Xia, Z.X., Y.N. He, W.W. Dai, S. White, G. Boyd, and F.S. Mathews, Detailed Active Site Configuration of a New Crystal Form of Methanol Dehydrogenase from Methylophilus W3A1 at 1.9 Å Resolution. Biochem., 1999. 38: p. 1214-1220.
4. Xia, Z.X., W.W. Dai, Y.S. Zhang, S. White, G. Boyd, and F.S. Mathews, Determination of the Gene Sequence and the Three-dimensional Structure at 2.4 Å Resolution of Methanol Dehydrogenase fromMethylophilusW3A1. J. Mol. Biol., 1996. 259: p. 480-501.