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Abstract 
The deformation / motion of a droplet suspended in a viscous liquid under the influence 
of an applied external electrical field are investigated through numerical simulations. The 
two-phase flow field of the drop suspension system is simulated using a front tracking / 
finite volume method for solving the full Navier-Stokes equations. Three different 
electric field models are applied in order to take into account the effects of the electric 
field, electric charge, and electrical properties of liquids. Drops with no net charge but 
finite electrical conductivity are simulated using a leaky dielectric model. Perfect 
dielectric model is used for the drops of electrically isolating fluid. To take into account 
the presence of a net charge on drop surface, we proposed a simplified constant surface 
charge model. In addition, the simulation code using the leaky dielectric model and 
perfect dielectric model is validated systematically against the results of theoretical 
analysis, the available experimental data, and the simulations by other researchers. It 
shows that the proposed numerical method (front tracking / finite volume method coupled 
with various electric field models) can make reasonable prediction on droplet 
deformation / motion under externally applied electrical field. Under different 
combinations of liquid properties, the droplets may deform into either prolate or oblate 
shape, and induce different inner and outer circulating flow patterns. When a net charge 
presents on the droplet surface and an electrical field is applied, both droplet deformation 
and motion can be reasonably predicted by the constant charge model. The simulation 
results demonstrate that the current numerical method may provide an effective approach 
to quantitatively analyze the complex electrohydrodynamic problems. 
 
Introduction 
 

Under the influence of an externally applied electric field, a drop suspended in a 
viscous liquid may experience complex behaviors1-5 (e.g. deformation, motion, 
electrorotation, and burst) depending upon the electric field strengths and the fluid 
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properties (e.g. viscosity, surface tension, electrical conductivity, and permittivity). 
Electric field has been used extensively to produce and manipulate the liquid drops in 
many industries3, 6, 7 for atomization, inkjet printing, enhanced coalescence, emulsion 
breaking, etc  
 

Mathematical Formulations  
Fig. 1 illustrates a schematic 2D axisymmetric model for the problems to be analyzed in 
the present study.  We consider an axisymmetric fluid drop of volume 3 3

4
dRπ (effective 

radius dR ), density iρ , viscosity iμ , permittivity iε , and electrical conductivity iσ , 
suspended in an immiscible fluid of density oρ , viscosity oμ , permittivity oε , and 
electrical conductivity oσ .  The drop suspension system consists of two immiscible liquid 
phases, the inner liquid phase (represented by subscript i) and the outer liquid phase 
(represented by subscript o).  At the initial stage, the shape of the drop is assumed to be 
spherical, and the centre of drop is located at the middle of a parallel-plate capacitor with 
a separation distance of dR8 . After applying different electric potentials to the parallel 
plates ( +− φφ , ), a steady and uniform electric field ( E ) is generated along the axial 
direction ( Z ) of the drop.  Under the influence of electric field, the drop may start to 
deform depending upon the operating conditions. In this study, the densities of the drop 
and the surrounding fluid are assumed to be identical so that the drop is under neutrally 
buoyant conditions and the effect of gravitational force can be neglected.  The interface 
separating the two fluids is assumed to have a constant interfacial tension coefficient γ . 
To easily characterize the two-phase fluid system, we define the following fluid property 
ratios: oiM ρρ /= , oi μμλ /= , oiQ εε /= , oiR σσ /= .  Here, the density ratio and 
viscosity ratio are fixed at the value of one ( 1 ,1 == Mλ ) so that our attention can focus 
on studying the influence of electric filed on the drop deformation and motion.  
 

Governing equations for two-phase flow   
The flow field simulation is formulated by solving the governing equations of mass 

and momentum conservation. Assuming the system to be isothermal, both phases can be 
considered incompressible.  Hence, the mass conservation over the whole simulation 
domain, including both fluid phases and their interface, can be expressed as 

0=⋅∇ U ,                                                             (1) 
where U  is the fluid velocity. 

In addition, the two-phase flow system studied here is coupled with the applied 
electric field and electric charges on the interface. To take into account the surface 
tension on liquid-liquid interface ( STF  ) and the electric stress ( ESF ), the Navier-Stokes 
equations would need to include the additional terms for these forces and can be re-
written as 

( )[ ] ESST
T Fp

t
++∇+∇⋅∇+−∇=⋅∇+

∂
∂ FUUUUU μρρ     ,                (2) 
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where ρ  is the density of the fluid, p  is the pressure, μ  is the viscosity of the fluid.  

STF  is the body force due to the surface tension, while ESF  is the body force due to the 
electric field. 

The surface tension force on the interface can be calculated as follows  
( )∫ −=

f
ffffST dS  xxnF δγκ ,                                    (3) 

where γ  is the surface tension coefficient, fκ  is the curvature of the interface, fS  
denotes the line element on the interface, and ( )fxx −δ  is a Dirac-delta function. 
Subscript f refers to the front or interface. The use of a Dirac-delta function will ideally 
create a sharp interface in the mathematical formulation. However, to implement this in 
the numerical simulation, the Dirac-delta function should be expressed in a discretised 
form, and an approximation will be described in a latter section.   

Following the previous works by Melcher and Taylor10 and Saville11, the electric 
stress can be calculated by taking the divergence of the Maxwell stress tensor ( Mτ ) while 
assuming that the fluid is incompressible. The final results in terms of the force per unit 
volume is given as 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

⋅∇++∇⋅−=⋅∇= ρ
ρ
εε EEEEEτF

2
1 

2
1 vM

ES q ,                           (4) 

where E  is electric field strength, ε  is the permittivity of fluid and vq is the volume 
charge density near the interface. The first term on the right-hand side of Eq. (4) is due to 
the polarization stress, and it acts along the normal direction of the interface as a result of 
the term ε∇ . The second term is due to the interaction of the electric charges with the 
electric field, acting along the direction of the electric field.  The last term results from 
the changes in material density, usually called electrorestriction force density.  This term 
is neglected in this study as the fluid is assumed to be incompressible.  As the electric 
charges are located on the interface, both the polarization electric stress and the charge-
field interaction electric stress would thus be exerted on the interface.  In order to 
calculate the electric force, the electric field strength ( E ) and volume charge density 
( vq ) in Eq. (4) are estimated using the various electric field models discussed in the 
following section.  

Governing equations for electric field 
The electrohydrodynamics in two-phase flows has been reviewed by several authors 

including Melcher and Taylor8 and Saville9.  In elctrohydrodynamics, the dynamic 
currents are small, and hence the magnetic induction effects can be ignored. Therefore, 
the electric field intensity is irrotational ( 0=×∇ E ). The Gauss law in a dielectric 
material with permittivity (ε ) can be written in terms of the electric displacement 
( ED  ε= ) as 

vq=⋅∇=⋅∇ ) ( ED ε  ,                                             (5) 
where vq is the volume density of local free charges. And the charge conservation can be 
expressed as follows,  
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where DtD ) ( is the material derivative, σ denotes the electrical conductivity, and 
U represents the velocity of the fluid.  In a homogeneous incompressible fluid where 
ε and σ are constants and 0=⋅∇ U , we can make far-reaching conclusions about the 
distribution of the free-charge density vq .  Combining Eqs. (5) and (6), we obtain the 
following equation about the free charges,  

vv qq
t ε

σ
−=⎥⎦

⎤
⎢⎣
⎡ ∇⋅+
∂
∂  
 
 U  and tv

o
v eqq ⋅−= εσ / .                           (7) 

From Eq. (7), it can be estimated that the free-charge density in the neighborhood of a 
given fluid particle decays from the initial charge density v

oq  with the electric relaxation 
time σε /=Et .   The viscous time scale of the fluid motion is given by μρ /2Ltv = , 
where ρ and μ are the density and viscosity of the fluid, and L is the characteristic length 
scale.  If the fluid is electrically conductive and satisfies the relation vE tt << , the charge 
may accumulate at the interface almost instantaneously as compared to the time scale of 
fluid motion.  On the other hand, for the weakly conducting fluid, it may behave as a 
perfect dielectric material when vE tt >> . There is no free electric charge in the perfect 
dielectric fluid system.  

1. Leaky dielectric model 
When both liquids in a two-fluid system are electrically conductive and satisfy the 

condition vE tt << ,  the charge conservation in the bulk of an inhomogeneous continuous 
medium can attain steady state much faster than the time scale of the fluid motion.  The 
charge conservation equation (Eq. (6)) can be simplified with an quasi-static assumption, 
and expressed by the divergence of the current density due to the electrical conduction  

0) ( =⋅∇ Eσ .                                                        (8) 
In the absence of any time-varying magnetic field, the curl of the electric filed is zero 
( 0=×∇ E ). The electric filed can be re-expressed in terms of electric potential (φ ) by 

φ−∇=E . This would then mean that the charge conservation equation in the liquid can 
be written as 

0) ( =∇⋅∇ φσ .                                                           (9) 
In a two-fluid system, the electrical conductivity is constant within each fluid, and Eq. (9) 
for electric potential (φ ) can be reduced to Laplace equation ( 02 =∇ φ ) in each medium.  
At the interface between the two fluid mediums, the continuities of electric potential and 
electric current are preserved    

0=φ , and 0 =⋅∇ nφσ ,                                     (10) 

where  represents a jump across the interface and n  the unit normal vector at the 
interface.  It is understood that the above boundary conditions at the interface between 
two fluids can be embedded in the governing equation (Eq. (9)) for electric potential with 
variable electric conductivity σ  in the difference fluid regions of the system. The electric 
potentials on the physical boundaries can normally be determined according to the 
experimental condition. With the solution of Eq. (9), the electric potential can be 
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obtained, and then the electric field strength is calculated by φ−∇=E .  Based on Eq. (5), 
we can obtain the distribution of volume charge density,  

) ( Eε⋅∇=vq .                                                    (11) 
With the calculated distributions of electric charge density and electric field strength, the 
electric stress within the liquid bulk in the vicinity of interface can then be determined 
through Eq. (4) for incompressible fluid by   

 EEEτF vM
ES q+∇⋅−=⋅∇= ε 

2
1 .                             (12) 

It can be clearly seen from Eqs. (11) and (12) that both the polarity and the magnitude 
of the electric charge density are dependent on the change of permittivity and electric 
field along the span of the interface. For the case of a spherical or near spherical droplet, 
there is no net free electric charges on the drop due to the fact that the positive charge 
density on one side of the drop will be balanced out by the negative charge density on the 
opposite side of the drop. 

2. Perfect dielectric model  
When both liquids in a two-fluid system have low electrical conductivities and satisfy 

the condition vE tt >> , they can be considered as dielectric materials. An externally 
applied electric field polarizes the molecules of the dielectric material. The formed 
molecular dipoles will also modify the electric field, which again change the polarization 
field. The results of this infinite regress can be obtained directly by solving for the 
electric displacement from the free-charge configuration using Eq. (5).  As a perfect 
dielectric medium has inhomogeneous isotropic polarizability and no free charge is 
presenting in the medium ( 0=vq ), the governing equation for the electric field can be 
written as 

0) ( =⋅∇ Eε .                                                   (13) 
In the absence of any time-varying magnetic field, the curl of the electric filed is zero 
( 0=×∇ E ). The electric field can be expressed as the gradient of electric 
potential, φ−∇=E .  Hence, equation (13) can be re-written in terms of electric potential 
φ  as 

0) ( =∇⋅∇ φε .                                                    (14) 
In the current study, we are interested in the situation where there are two dielectric fluids 
in the system and they are separated by a sharp interface. Within each fluid, the 
permittivity is constant, and the governing equation for electric potential (Eq. (14)) is 
reduced to a Laplace equation ( 02 =∇ φ ).  Since there is no free charge at the interface 
between the two fluids with different permittivities, the conditions of continuity of the 
normal component of electric displacement across the interface and the continuity of 
electric potential are applicable, 

0=φ , and 0=⋅∇ nφε .                                  (15)  
In fact, the above boundary conditions at the interface between two fluids can be 
embedded in the governing equation (Eq. (14)) for electric potential with variable 
permittivity ε  in the different fluid regions of the system.  The electric potentials on the 
physical boundaries normally can be determined by the test conditions of the applied 
electric field.   
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In this case, the electric field can be determined by the calculated electric potential 
distribution using the relation φ−∇=E .  Therefore, with the conditions of no existence 
of free change ( 0=vq ) and incompressible fluid, the electric stress on the interface 
between two dielectric fluid mediums can be determined from Eq. (4) as 

ε∇⋅−=   
2
1 EEFES                                               (16) 

The direction of the electric force for a perfect dielectric drop is in the normal 
direction of the interface, since this direction is determined by the gradient of the 
electrical permittivity ε∇ , pointing from the medium with high permittivity to the one 
with low permittivity. Furthermore, the electric stress acts only on the interface since the 
electrical permittivity gradient exists only across the interface.   

Results and Discussion 

Leaky dielectric drop 
To examine whether the numerical method proposed in the present study (front 

tracking / finite volume method coupled with various electric field models for different 
fluid systems) are able to produce accurate prediction on the droplet deformation under 
influence of external electric field, numerical simulations are compared with the available 
experimental results under the same operation conditions.  The experimental data by 
Torza et al.1 are chosen as the basic case for the validation study. The fluid inside the 
drop is silicon oil and the outside fluid is oxidized castor oil. Since the fluids used in the 
experiment are conductive, the leaky dielectric model is used to simulate the electrical 
effect. Based on the fluid properties (Class C, system 16) provided in Torza et al.1, we 
can obtain the following dimensionless number to characterize the problem: 3.144=Oh , 

033.0<R , 44.0=Q , 3.6/ =ao εε  and ECa  is varied at 0.137, 0.380 and 0.745 
respectively. Here, aε stands for the permittivity of vacuum/air, having a value of 

1210854.8 −× F/m. With the initial assumption of spherical drop suspending in the 
stationary liquid, transient simulation is performed until a steady drop shape is obtained. 

To characterize the droplet deformation, the drop deformation factor D  is calculated 
using the following definition, 

BL
BLD

+
−

=                                                         (17) 

where L  is the end-to-end length of the droplet measured along the axis of symmetry and 
B  is the maximum breadth in the traverse direction. A positive D represents a 
deformation of the droplet that has an increased length in the axial (axis-symmetric) 
direction (prolate), while a negative D represents a deformation of the droplet that has an 
increased length in the radial direction (oblate).  

Fig. 2 shows the comparison of droplet deformation between the experimental 
observations (top) and the simulation results (bottom). The drop deforms into an oblate 
shape. The deformation increases when the electric field strength becomes stronger.  The 
measured drop deformations in the experiment are 0.020D = −  for 137.0=ECa , 

0.062D = −  for 380.0=ECa and 139.0−=D  for 745.0=ECa .  The simulation results 
on the drop deformation are 0.020D = − , 0.058D = − and 133.0−=D  for conditions of 



 7

respective electric strengths. The comparison indicates that the deformation factors 
predicted by the numerical simulations agree well with experimental data.   

The early work of Taylor10 presented a theoretical analysis on the drop deformation 
under external electric field. Expressed in term of Taylor’s asymptotic results, an explicit 
relationship between droplet deformation D and electric field strength ECa  as well as the 
fluid properties such as the electrical conductivity, permittivity and viscosity, turns out to 
be 

( ) E
d Ca

R
QRf

D  
2  8

),,(  9
2+

=
λ

,                                                     (18) 

where, df  represents the discriminating function and is given by 

)1(
)32()(

5
321),,( 2

λ
λλ

+
+

−+−+= QRQRRQfd ,                        (19) 

where the viscosity ratio (λ ) is always set to be one in the current study.  When 0>df , 
the drop will deform into a prolate shape, while when 0<df , the drop will deform into 
an oblate shape. 

Based on the Taylor theory, the droplet deformations for the experimental cases by 
Torza et al.1 are 0195.0−=D  for 137.0=ECa , 0543.0−=D  for 380.0=ECa  and 

1064.0−=D  for 745.0=ECa  as shown in Fig. 2.  If we compare the theoretical 
predictions on the drop deformation with those obtained from experiments and 
simulation, it is easy to find that they all agree very well when the electric field strength 
is low or the drop deformation is small.  However, the Taylor’s theoretical prediction 
deviates from the results of experiments and simulation significantly when the droplet has 
a large deformation ( 05.0>D ).  This is because the Taylor’s theoretical analysis is 
based on the assumption of small drop deformation.  

Due to the limited availability of experimental data on drop deformation under the 
influence of uniform external electric field, it is difficult to validate the current model 
against experimental results over a wide range of operation conditions. Fortunately, the 
accuracy of Taylor’s theory for small drop deformation has been proven by the previous 
research works of Feng & Scott11 and Lac & Homsy12.  Therefore, a series of simulations 
are conducted in this study to investigate the effects of electric field strength, electrical 
conductivity ratio and permittivity ratios on drop deformation. The simulation results are 
compared with the prediction by Taylor’s theory for validation.  In the following 
simulations, we assume that the drop fluid and the surrounding fluid have the same 
density ( 1=M ) and viscosity ( 1=λ ), and a constant Ohnsorge number 289.0=Oh  
which is based on the fluid system with 800=ρ  kg/m3,  1.0=μ  Pa S, 005.00 =R  m 
and 03.0=γ  N/m.  These parameters are fixed in all other simulations reported in the 
present study unless they are explicitly specified otherwise.  

Fig. 3 shows the simulation for the effect of electric field strength on the drop 
deformation. The electrical capillary number ECa  is increased from 0.1 to 2.5, while 
other parameters are kept constant ( 5.2=R and 0.2=Q ).  It is clearly shown that the 
drop deformation increases with the increasing strength of electric field. When the drop 
deformation is small, the deformation almost increases linearly with the electrical 
capillary number, which agrees well with the prediction by Taylor’s theory (Eq. 18).    
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Conclusions 
The front tracking/finite volume method for two-phase flows, coupled with various 

electric models (leaky dielectric model, perfect dielectric model and constant charge 
model) has been utilized to simulate the deformation / motion of a drop in viscous liquid 
under the influence of an externally applied electrical field. To take into account the 
coupling of electric field and charge, drop deformation and surface tension, and flow 
field inside and outside drop, the full Navier-Stokes equations, including the additional 
source terms of electric force and surface tension on the drop surface, are solved for the 
flow field. Subsequently the front tracking method is used to the tacking the position of 
drop interface while deformation is taking place, as well as the distribution of fluid 
properties and electric charge distribution.  The proposed numerical method has been 
applied to investigate the deformation / motion of a drop of various fluids under the 
influence of a steady electric field. The simulation predicted the drop deformation under 
the variations in electric filed strength, permittivity ratio, and electrical conductivity ratio. 
The fluid flow behavior inside and outside the drop is also predicted.  The simulation 
results of both leaky dielectric model and perfect dielectric model have been validated 
with the theoretical results and available experimental data. We also use the current 
method to simulate the deformation and motion of a charged drop in an electric field. It is 
found that the current model can give reasonable predictions on the drop deformation / 
motion in an electric field under a wide range of operating conditions.     

 
The present study of the drop deformation /motion under a steady electric field 

demonstrates that the current numerical method is robust and accurate. It has high 
potential to be further extended to study other more complex and interesting 
electrohydrodynamic problems. 
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FIG. 1. Schematic of the axisymmetric model of a droplet suspending in another 

immiscible liquid under an external electric field. 
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FIG. 2.  Comparison of the droplet deformation (a) observed in the experiments of Torza 

et al. (1971) and (b) predicted in the simulation using the leaky dielectric model. 
D is the deformation factor. The test condition is as follows: 033.0<R <0.33, 

44.0=Q , and ECa  is changed from left to right at 0.136, 0.38 and 0.745, 
respectively. The predicted droplet deformations by Taylor’s theory are 

0195.0−=D , 0543.0−=D , and 1064.0−=D , respectively.  
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FIG. 3. Effect of electric field strength on droplet deformation as predicted by Taylor’s 
theory and the present numerical simulation (leaky dielectric model). Other 
parameters are kept constant: 5.2=R , 0.2=Q . 

 
 


