In this presentation, we demonstrate a method for the verified solution of nonlinear ODE models, thus computing rigorous bounds on the population of a species over a given time period, based on the ranges of uncertain values. The method is based on the general approach described by Lin and Stadtherr [1], which uses an interval Taylor series to represent dependence on time, and uses Taylor models to represent dependence on uncertain parameters and/or initial conditions. We also demonstrate an approach for the propagation of uncertain probability distributions in one or more model parameter and/or initial condition through a population model. Assuming an uncertain probability distribution for each parameter and/or initial condition of interest, we use a method, based on Taylor models and probability boxes (p-boxes) and recently described by Enszer et al. [2], that propagates these distributions through the dynamic model. As a result, we obtain a p-box describing the probability distribution for each species population at any given time of interest. As opposed to the traditional Monte Carlo simulation approach, which may not accurately bound all possible results of nonlinear models under uncertainty, this Taylor model method for verified probability bounds analysis fully captures all possible system behaviors. The methods presented are tested on a series of small food chains or webs representable by nonlinear ODE systems, including the tritrophic Rosenzweig-MacArthur model. The results are compared to those obtained by Monte Carlo simulations.
[1] Lin, Y., Stadtherr, M.A. Validated Solutions of Initial Value Problems for Parametric ODEs. Applied Numerical Mathematics, 57: pp. 1145--1162, 2007.
[2] Enszer, J.A., Lin, Y., Ferson, S., Corliss, G.F., Stadtherr, M.A. Propagating Uncertainties in Modeling Nonlinear Dynamic Systems. In Proceedings of the 3rd International Workshop on Reliable Engineering Computing, Georgia Institute of Technology, Savannah, GA: pp. 89--105, 2008.