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We introduce a new method for the calculation of bounds on the eigen-
values of Hessian matrices of twice continuously differentiable functions.
Eigenvalue bounds of Hessian matrices arise in a number of notoriously
difficult tasks in computational chemical engineering. For example, Hes-
sian matrix eigenvalue bounds are used in global nonlinear optimization,
global convexity/concavity analysis in convex optimization, and global pos-
itive/negative invariance analysis in nonlinear control.

We stress that the improvements in computational complexity to be
stated below are only possible, because the desired Hessian matrix eigen-
value bounds are calculated without ever calculating the Hessian matrix
itself. To the author’s knowledge the proposed method is the first Hessian-
matrix-free approach to bounding Hessian matrix eigenvalues.

We start with a more precise problem statement in the next section,
summarize the methodological advances in a subsequent section, and
turn to applications in the last section.

Problem statement Two variants of the proposed method must be care-
fully distinguished from one another. Both variants apply to twice continu-
ously differentiable functions f : U C R® — R. Let 2o € U be an arbitrary



point and let S = [z,, 7] x --- X [z,,, T,] be an arbitrary closed hyperrect-
angle. With the first variant we calculate bounds on the eigenvalues of
a Hessian matrix that has been evaluated at a point. More precisely, we
determine A € R and A € R such that A € [\, )] for all eigenvalues \ of
V2f(x) evaluated at an arbitrary but fixed z, € U. The second variant
provides bounds that apply to all eigenvalues of the Hessian V2 f(x) eval-
uated on a hyperrectangle. More precisely, we calculate bounds A € R
and X € R such that \ € [\, )] for all eigenvalues A of V2f(z) for all z € S.
For brevity we refer to these two cases as the real and the interval variant
of the method, respectively. These names are chosen because the first
variant applies to real matrices V2 f(x) € R™*" while Hessian matrices on
hyperrectangles are often approximated by interval Hessian matrices.

Advances and relation to existing methods Both the real and the in-
terval variant of the new method are compared to established methods,
specifically the method due to Gershgorin [3] and the method due to Hertz
[4] and Rohn [6], respectively. Hertz and Rohn’s method is known to pro-
vide tight, i.e. the best possible, bounds on the eigenvalues of interval ma-
trices. We note that Hertz and Rohn’s method is exponentially complex,
however. This complexity is not surprising, since the problem of calculat-
ing tight eigenvalue bounds for interval matrices is known to be NP-hard
[1].

In a formal proof the real variant of the method can be shown to be one
order of magnitude computationally less complex than the method due to
Gershgorin. More precisely, the proposed method provides bounds at a
complexity

where N(f;) denotes the number of operations necessary to evaluate the
function f; at a point xy, where i € {1,...n}. In contrast, the calculation of
the Hessian matrix and its eigenvalue bounds with Gershgorin’s approach
can be shown to require O(n?) N(f;) operations. Despite its lower com-
plexity, nontrivial examples exist for which the proposed method results in
bounds that are tighter than Gershgorin’s bounds.

The results for the interval variant of the method are somewhat sur-
prising and have to be summarized more carefully. First we note that the
interval variant of the method can be shown to belong to the same poly-
nomial complexity class (1) as its real counterpart. Furthermore, nontrivial



examples of functions exist for which the new method provides bounds on
the eigenvalues of the Hessian matrix on hyperrectangles that are tighter
than the bounds obtained with Hertz and Rohn’s method for the interval
Hessian matrix. At first sight, this claim seems to be a contradiction to both
the NP-hardness and the tightness of Hertz and Rohn’s method. Closer
inspection reveals that the restrictions that apply to methods for interval
Hessians do not apply here, because neither real nor interval Hessian ma-
trices are ever calculated in the proposed method.

Due to its polynomial complexity the interval variant of the new ap-
proach can be expected to be of use in cases where the exponential com-
plexity of Hertz and Rohn’s method is prohibitive.

Applications Bounds on eigenvalues of Hessian matrices can be used
in a variety of applications. Eigenvalues of real Hessian matrices can be
used to check sufficient optimality conditions in nonlinear programming, for
example. Bounds on eigenvalues of Hessians on hyperrectangles can be
used in deterministic approaches to global nonlinear optimization to create
convex underestimators. A famous example for such an approach is the
aBB method developed by Floudas and coworkers [2].

In the present contribution we use an application from stability and con-
trol theory to illustrate the use of the new method for the calculation of
eigenvalue bounds. In stability and control theory, positive definiteness, or
equivalently convexity, of quadratic forms appears in various criteria that
are based on Lyapunov functions (see e.g. [5]).

Here we focus on the use of Hessian matrices on hyperrectangles for
the search of positive invariant sets of dynamical systems. Essentially,
a set in the domain of a nonlinear dynamical system is called positive
invariant if the system never leaves it once it entered it. We state two
simple criteria for positive invariance, which are based on the first and
second order Taylor approximation of the nonlinear dynamical system. We
show that examples exist where positive invariance can be established
with the second order but not the first order criterion. In order to efficiently
evaluate the second order criterion, bounds on eigenvalues of Hessian
matrices are calculated with the new method proposed here.
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