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Introduction 

 The estimated number of people in the US with diagnosed diabetes has more than 
doubled in the last 15 years to 14.6 million, with associated annual medical costs of $174 
billion; type 2 diabetes mellitus (T2DM) represents 90 to 95% of these cases [1]. 

 T2DM is primarily linked to obesity and insulin resistance—a decreased sensitivity of 
glucose response to normal insulin levels—which have been linked to defects in the insulin 
signaling pathway.  Analysis of detailed mathematical models of insulin signaling should yield a 
better understanding of the underlying mechanisms of insulin resistance and its subsequent 
progression to T2DM. This may be very relevant for maximizing treatment efficacy and 
minimizing side effects, which can ultimately improve the quality of life for those who suffer 
from T2DM. 

 We have brought a variety of engineering tools, including stochastic modeling, 
parameter sensitivity analysis, and robust performance analysis, to bear on an existing insulin 
signaling model, published by Sedaghat et al. [2].  This differential equation (DE) model, based 
primarily on mass action kinetics, largely reproduces the mechanisms in adipocytes (fat cells) 
that transduce an insulin input signal to movement of GLUT4, a glucose transporter 
responsible for glucose uptake, to the cell surface. 



 

Figure 1. Sedaghat insulin-stimulated GLUT4 translocation model with feedback mechanisms 

 

 The Sedaghat model of insulin-stimulated GLUT4 translocation can be decomposed 
into 3 sub-models.  The first sub-model describes  insulin receptor dynamics—insulin binds to 
insulin receptor, causing subsequent receptor autophosphorylation; receptor recycling 
dynamics are also included.  The second sub-model describes the phosphorylation cascade 
downstream from the insulin receptor: phosphorylated insulin receptor has tyrosine kinase 
activity, leading to the activation of a signaling cascadeconsisting of insulin receptor substrate 
1 (IRS1), phosphatidylinositol 3-kinase (PI3K), phosphatidylinositol triphosphate (PIP3), 
followed by protein kinases B (Akt) and C (PKC ).  The final sub-model describes the 
movement and fusion of specialized GLUT4 storage vesicles with the plasma membrane by 
Akt and PKC —the extent of GLUT4 translocation is quantified by the percentage of the total 
amount of GLUT4 that exists in the plasma membrane (surface GLUT4).  Two versions of the 
model were proposed by Sedaghat et al., one incorporating both positive and negative 
feedback mechanisms with 21 states and one without these mechanisms with 20 states 
(Figure 1). 

 Upon scaling the deterministic model for a typical human adipocyte cell volume of 0.93 
nL [3], we found that molecule counts revealed that several model species were present in 
small numbers (O(1) in some instances).  When such small populations are involved, 
fluctuations may have significant effects on system behavior.  To investigate this possibility, we 
have developed and simulated a stochastic version of the Sedaghat model. 

 While the Sedaghat model is the most complete available in the literature, it does not 
incorporate a number of known signaling components and has, to date, not been validated.  
Thus, we wanted to design an optimal experiment to better identify the model.  To do this, we 
estimated the kinds of fluctuations one might observe in a reasonably-scaled experiment using  



our stochastic simulation of the Sedaghat model.  Using these fluctuation estimations 
combined with parameter sensitivity analysis, we optimized experimental design for model 
identification. 

 We have also approached this model from a different but complementary perspective.  
It may not be terribly important to identify each model parameter precisely, as the signaling 
network structure may be robust to variations in that parameter.  Conversely, the signaling 
network may be particularly fragile to perturbations in certain parameters, which may pinpoint 
potential causes for insulin resistance or even suggest potentially potent targets for drug 
therapy. Therefore, we performed a robustness analysis on the Sedaghat model to identify 
specific parameters that are crucial for robust performance of the GLUT4 response to insulin. 

Stochastic Simulation of Sedaghat Model 

 The accuracy of a deterministic model fitted to data depends on measurement 
precision, which is limited by, among other factors, stochastic fluctuation magnitude. Because 
modern experimental methods can quantify the dynamic response of single target cells to 
insulin, we became interested in establishing whether a deterministic model can completely 
describe a system at this scale.  

 A discrete stochastic model can be derived from an ordinary differential equation 
(ODE) model by first representing the ODE’s as individual chemical reactions.  The rates of 
change in the state variables are then converted to propensity functions that describe the 
probability that a corresponding reaction will occur.  When the ODE model is represented 
using only mass action kinetics and the chemical species are assumed to be well- mixed, the 
conversion to a stochastic model is straightforward and the resulting stochastic model has a 
time-dependent probability of being in any possible state that is described by the chemical 
master equation (CME).  Due to its high dimensionality, the CME can rarely be solved exactly.  
However, using Gillespie's stochastic simulation algorithm (SSA) to run many realizations of 
the stochastic model, it is possible to get reasonable estimates of the solution of the CME [4]. 

 A stochastic version of the Sedaghat model with feedback mechanisms was 
implemented using the StochKit software package.  Custom code was added to modify the 
propensity functions when the deterministic model does not follow simple mass-action 
kinetics.  Additional custom code was written to allow arbitrary insulin input functions, such as 
the pulse input used by Sedaghat et al. [5]. 

 To estimate the effect of stochastic fluctuations, we used the SSA to generate 100 
realizations of the stochastic model.  A 15 minute pulse input of insulin was used, and state 
information was collected at every minute of simulation time up to 60 minutes. 

Stochastic Simulation Results 
 For this model, appropriate metrics of the adipocyte response to insulin include the 
peak values of GLUT4 (glucose transporter) at the plasma membrane and the distribution of 
these values.  There is qualitative agreement in the trajectory of the deterministic model and 
the mean trajectory of the stochastic models; however, the peak surface GLUT4 percentage is 
roughly 34% in the ODE model compared to 30% (1.51x106 molecules/cell) for the mean of the  



stochastic simulations (Figure 2).  We attribute this difference to a non-mechanistic upper 
bound on the effect of Akt and PKC  on GLUT4 translocation in the deterministic model (see 
[5] for a more complete explanation). 

 

Figure 2. Means, standard deviations, and extreme values of percentage surface GLUT4 for 
100 realizations of stochastic model versus Sedaghat model 



 

Figure 3. Histogram of the peak surface GLUT4 values for 100 realizations of the stochastic 
model.  

 The peak values of the individual stochastic realizations are summarized in Figure 3.  
It is of note that the peak of the mean values of surface GLUT4 percentage, 30%, does not 
equal the mean of the peak values, 32% (1.63 x106 molecules/cell); this is due to fluctuations 
in time to reach peak value (mean: 15.48 minutes). 

 The stochastic fluctuations around peak surface GLUT4 are approximately Gaussian; 
the standard deviation is 2.1% in surface GLUT4 percentage—or 7% of the mean (Figure 2).  It 
is difficult to assess how physiologically relevant these fluctuations are.  In addition, non-mass 
action kinetics in the original deterministic model may distort the computed stochastic 
fluctuations unrealistically. 

Experimental Design Using Sensitivity Analysis 

 Because experimental measurements can be sparse in biological systems, it is vital to 
develop an experimental design that can maximize the amount of information about model 
parameter values from limited and noisy measurements.  We believe that there is utility in 
optimizing experimental protocols in this particular case because the Sedaghat model lacks 
experimental validation.  By taking into account the model structure and estimating 
measurement noise (using stochastic fluctuation as a surrogate), we have used parameter 
sensitivity analysis to create experimental designs that are efficient for model identification, 
given constraints on measurement error and cost. 



 For an ODE model, a differential change in a parameter pj from its nominal value may 
cause a change in state xi, which is captured by a sensitivity coefficient, Sij (where i ranges 
from 1 to the number of states Nx that will be measured and j ranges from 1 to the number of 
parameters Np in the model that are of interest).  For each measurement time point tk (where k 
ranges from 1 to the number of timepoints Nt), a sensitivity coefficient matrix for each time 
point is generated (Equation 1). 
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 The sensitivity coefficient matrices are combined with estimations of measurement 
error (which are assumed to be Gaussian) for each state and timepoint to calculate the Fisher 
information matrix (FIM), where i(tk) is the standard deviation for state xi  (Equation 2). 
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 In the computations described below, we have selected i(tk) to be the corresponding 
standard deviation from the stochastic simulations described above.  The assumption that the 
stochastic trajectories have a normal distribution is not generally valid, particularly for states 
with O(1) copy count per cell volume. 

 A minimum measurement error of 1 molecule per cell volume is assumed, which 
allows V(tk) to be inverted in Equation 2.  This minimum value is typically larger than the 
observed deviation from a normal distribution for states with O(1) copy count per cell volume; 
thus we can account somewhat for non-Gaussian behavior. 

 Finally, with the above assumptions, the FIM can be used to generate a lower bound 
the error that an unbiased estimation of parameter pj, j, would have if generated using 
measurements of a given choice of measured states, {xi}, and measured timepoints, {tk} 
(Equation 3). 
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For a more complete treatment, see [6]. 

 To select between each choice of state and timepoint sets, we set a maximum 
allowable estimation error, the 95% confidence interval around the nominal parameter value, 
1.96pj, for each “identified” parameter.  For state and timepoint sets with identical numbers of 
identified parameters, the one with the smallest average normalized value of the 95% 
confidence interval for identified parameters (i.e., the most accurate estimation) is chosen. 



Table 1. State measurement selection 

# of states Optimal states # of identified pj Average j / pj 

21 All 10 0.156 

10 x2,x5,x6,x8,x9,x10,x13,x16,x20,x21 10 0.179 

5 x2,x5,x9,x10,x20 8 0.236 

3 x2,x9,x20 4 0.288 

 

Table 2. Timepoint measurement selection 

# of timepoints Optimal timepoints (min) # of  identified pj Average j / pj 

60 All 10 0.156 

15 1-5,10,19-24,46,56,57,60 9 0.179 

10 1-5,10,24,46,56,57 8 0.150 

5 1,3,4,46,56 8 0.200 

 
Experimental Design Results 
 The sensitivity coefficient matrices were calculated for 31 parameters (after combining 
those that are a priori unidentifiable) in the Sedaghat model with feedback mechanisms over a 
60 minute “experimental” duration using BioSens, a sensitivity analysis program [7].  As for the 
stochastic simulation, a 15-minute insulin pulse was used.  Because the stochastic error 
estimations are in 1 minute intervals, the maximum number of timepoints that can be collected 
is 60.  For any desired number of states and/or timepoints, a MATLAB routine was written that, 
first, maximizes the number of identified parameters and, second, minimizes the error in 
parameter estimation of identified parameters. 

 Selecting measured states that allow for maximum parameter estimation was the first 
experimental design undertaken, allowing all 60 timepoints to be measured.  These results are 
summarized in Table 1 (Refer to Figure 1 for state numbers and signaling components).  
Overall, we observe that the model is not highly identifiable.  Only 10 of 31 parameters can be 
identified with all state and timepoint measurements.  More state measurements increases 
identified parameter count and accuracy.  One would expect that directly measuring the states 
at the end of the signaling cascade would yield the highest amount of information, since later 
states would carry information about parameters that appear upstream.  However, because 
different states have different measurement errors associated with them, this is not the case. 

 Selecting measured timepoints that allow for maximum parameter estimation was the 
next experimental design; these results are summarized in Table 2.  Once again, taking more 
timepoints results in increased parameter identification and accuracy.  The timepoints that 
contain the most parameter information seem to be clustered near the onset of insulin 
stimulation (1-5 minutes), with the remaining timepoints coming as the system relaxes back to 
a resting condition after the insulin stimulus is removed. 



Table 3. Mixed state and timepoint selection 

# of states # of timepoints # of identified pj Average j / pj 

20 15 9 0.179 

10 30 10 0.201 

5 60 8 0.236 

 

 With the effects of state and timepoint measurement selection characterized 
separately, we turned our investigation to optimizing both state and timepoint measurement 
together.  Thus, for a fixed total number of measurement datapoints (300), optimal state and 
timepoint measurements were determined and their effects on parameter identification are 
summarized in Table 3.  For this example, an experimental design that tracks an intermediate 
number of states (10) and timepoints (30) would best identify model parameters.  This method 
is easily adapted for modern high throughput methods of collecting biological data, including 
microarrays or phosphoproteomic methods, to select optimal measurement sets. 

Insights from Robustness Analysis 

 Ultimately, it is hoped that the deterministic and stochastic models developed with the 
aid of the above techniques are useful in guiding modeling (in)validation and for (possibly 
combinatorial) drug targeting in insulin resistant cells.  With this in mind, structured singular 
value (SSV or μ) analysis is performed to identify possible points of robust therapeutic 
intervention which minimize hazardous side effects.  Fluctuations are not strictly limited to 
signaling pathways, as the intracellular environment is also subject to external noise; any 
therapeutic strategy applied must be robust to the uncertainty of the local environment as well 
as to the uncertainty in the therapy itself.  
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Figure 4. To test for robust stability of an uncertain system (left), one need only test the 
stability of the feedback of the uncertainty (top right). To extend the test to robust performance, 
the input/output channels are closed under feedback through a full uncertainty block, || p||•1. 
Reconfiguring the system (bottom left) and noticing the similarity, robust performance can be 

evaluated by evaluating the robust stability of the resulting block diagram. 



 We use SSV analysis is used to quantify the range of fluctuation a set of parameters 
can tolerate while maintaining robust insulin signaling performance. Briefly, SSV analysis 
identifies the smallest size perturbation, , which destabilizes the stable plant, M. The “size” of  
is measured in terms of its maximum singular value, σ ( ) (Figure 4).  It is an extension of the 
Nyquist stability criterion, and μ is defined as 

, 1,1( ) min{ ( ) | det(  for structured }.μ σ
Δ

= Δ Ι −Μ Δ) = 0 Δ1 1M                             (4) 

A full mathematical treatment of SSV analysis can found in [8]. 

 The matrix  is block-diagonal and is chosen to distribute parametric uncertainty to 
specific locations about the Jacobian, hence the uncertainty is structured. Furthermore,  is 
generally weighted such that size of the system of uncertainty of interest is bounded, || ||•1; 
thus, when μ•1, the size of the perturbation to destabilize the system is greater than 1—outside 
of the uncertainty range of interest—and the system is robustly stable. 

 Extending robust stability to robust performance (RP) is achieved by applying a full 
uncertainty block, p, to the input/output channels and closing the channels under negative 
feedback, as robust stability of this closed-loop structure ensures robust performance. The 
calculation of μ is an NP-hard problem; exact solutions can be found for small systems, but 
generally an upper and lower bound must be found for μ.  

 To evaluate combinatorial therapies in the insulin signaling pathway, the Sedaghat 
model without feedback mechanisms is linearized (the model with feedback mechanisms is not 
amenable to linearization).  Robust performance is then defined as a tracking error about the 
nominal surface GLUT4 response.  Several parameters from the nonlinear model do not 
appear in the linearized model, and many of the remaining parameters appear in related pairs 
which may be lumped into single parameters for the purposes of RP analysis, leaving 17 
model parameters to be considered as possible therapeutic targets.  For this study, 3 
parameters (drug targets) are considered at a time, resulting in 680 possible parameter 
combinations. 

 First we sought to identify which sets of parameters, when perturbed, most effectively 
removed an individual cell from healthy performance. For each set considered, μ is calculated 
when each parameter is allowed to fluctuate within 5.0% of its nominal value (Figure 5).   . 
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Figure 5. The upper and lower bound on μ for each of the possible 680 parameter 
combinations 
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Figure 6. (Left) The set of all efficacious therapeutic combinations. (Right) The percentage of 
candidate therapeutic combinations that contain at least 1 (black), a combination of 2 (gray), or 

all three parameters PI3K, k-1, and k9stim (white). 

 Removing parameter sets for which the value of μ is poorly bounded (error difference> 
0.1), 74.9% of the parameter sets remain to be analyzed for efficacy.  Efficacy has been 
defined here as any remaining set with a μ value greater than 0.6.  Applying this filter, only 
8.1% of the original 680 possible combinations remain.  Figure 6 shows how the remaining 



parameter combinations cluster about key parameters. Three parameters from the Sedaghat 
model appear in every candidate set, PI3K, k-1, and k9stim, and at least 2 of these three 
parameters appear in 65% of the possible therapeutic vectors. The parameter PI3K accounts 
for the amount of PI3K in the cell; k-1 is the dissociation rate of insulin from its receptors; and 
k9stim represents the conversion of PIP2 to PIP3 by phosphorylated IRS1/activated PI3K complex.  
PI3K is involved in several cellular functions, has some known tumorigenic effects, and, as 
such, does not represent a suitable target vector.  Removing strategies directly targeting PI3K, 
future work will focus on exploring the remaining 21 possible therapeutic combinations.  These 
therapies will be applied to various models to test for efficacy in silico. 

Conclusion 

 Stochastic modeling and simulation of the Sedaghat insulin-stimulated GLUT4 
translocation network reveals fluctuations in concentrations that cannot be entirely captured in 
a deterministic model; these inherent fluctuations represent limits on measurement precision 
and are important to understanding the robustness and performance of the underlying 
biological system.  We have used this understanding, with sensitivity analysis, to create 
optimized selections of states and timepoints for this network. 

 The SSV analysis we performed illustrates an effective preliminary in silico procedure 
for the rapid identification and screening of potential drug targets in this network. Given the 
large amount of cross-talk between the insulin signaling network and other critical, auxiliary 
networks, multi-drug therapies were identified that best regulate the insulin response while 
minimizing side effects, identifying a number of potential drug therapy sets. 
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