
Optimization of Discrete Time Supply Chain
Models with Guaranteed Robust Stability and

Feasibility

Darya Kastsian and Martin Mönnigmann,
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Abstract

This contribution presents a method for the simultaneous economic
optimization and optimal design for disturbance rejection of discrete
time systems. The method is an extension of a previously presented
approach for the optimization of discrete time systems with constraints
on robust stability [10]. In this contribution we extend the method to a
new set of constraints on the location of poles of discrete time systems.

1 Introduction

Supply chain optimization has recently received a lot of attention. When
seeking optimal supply chain designs it is important to consider the stability
of the system, since supply chains are known to permit unstable behavior
as witnessed, for example, in the bullwhip effect. Beyond mere stability, it
is also important to design the system such that disturbances decay quickly
enough. In this contribution we discuss a method for the economic opti-
mization of discrete time systems which simultaneously ensures robust dis-
turbance rejection.

The proposed method is an extension of the normal vector methods for
the design of nonlinear dynamical systems with guaranteed robust stability
and feasibility [4,7–11]. The normal vector method was originally developed
for parametric uncertainty with respect to stability properties in optimiza-
tion problems. However, it naturally applies to the robust treatment of more
general dynamical properties as well as robust feasibility. In Section 2 we
discuss the normal vector method and its extension to ensuring disturbance
rejection. The proposed approach is applied in Section 3 to the optimization
of the supply chain model of an automatic pipeline feedback compensated
inventory and order-based production control system (APIOBPCS) embed-
ded within a vendor managed inventory (VMI) supply chain. Finally, in
Section 4 we give a conclusion.
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Figure 1: Optimal point of a hypothetical system with a critical boundary.
The parametric distance d to the locally closest point on the critical boun-
dary can be measured along the normal vector direction. The symbols α1

and α2 denote model parameters. If we ensure the distance between the
optimal point and the nearest critical point to be larger than zero, then the
optimal point is guaranteed to stay away from the critical boundary.

2 Normal vector method and rejection of distur-
bances

The normal vector method is based on the fact that equilibrium solutions
of dynamical systems can be characterized by their parametric distance to
the manifolds of critical points [7]. Typical critical points of interest are
bifurcation points or points at which state variable constraints are violated.
Normal vectors to the critical manifolds can be used to measure the distance
from the nominal point of operation to stability and feasibility boundaries in
the space of the system design parameters αi. In order to keep the optimal
point away from the critical boundary we constrain the parametric distance
between the critical manifold and critical boundary to be larger than zero.
This condition can be added to the optimization problem by posing an ap-
propriate nonlinear inequality constraint. In Figure 1 the critical boundary
and the normal direction to it are sketched for a hypothetical system. In
Figure 1 we show a case with two parameters, but for higher dimensional
cases the idea remains the same. In general more than one critical boundary
can exist. By staying sufficiently far away from all critical manifolds we can
guarantee robust stability and feasibility of the system.

For discrete time systems three types of bifurcation points exist, namely
the fold, Neimark-Sacker and flip bifurcations [6]. These bifurcation points
can be characterized by eigenvalues on the unit circle in the complex plane.
In order to ensure robust disturbance rejection we introduce a simple but
new type of critical point that is an extension and generalization of fold,
Neimark-Sacker and flip bifurcations. Applying the normal vector method to
this type of critical point amounts to forcing all eigenvalues of the linearized
discrete time system into a circle of radius R < 1 on the complex plane.
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Figure 2: Flow of information in a VMI supply chain.

By specifying the radius R, the user of the method can specify the decay
rate by which disturbances are rejected. We stress that while the normal
vector method makes use of the linearized system and its eigenvalues, the
decay rate constraint holds for the nonlinear system in a finite ball around
the nominal optimal system parameters [5].

3 Applications

We present the result of the optimization of a VMI-APIOBPCS supply chain
model with constraints on the decay rate for robust disturbance rejection. In
contrast to traditional supply chains the vendor managed inventory supply
chain distributors share inventory information and/or point of sales data
rather than orders with their manufacturers. Alternatively, the manufac-
turer can determine the inventory from deliveries and sales if the distributor
does not have the ability to share inventory information or is hesitant to do
so, but is willing to share end sales data. A simple schematic VMI supply
chain is illustrated in Figure 2 [3]. The system belongs to the class of auto-
matic pipeline feedback compensated inventory and order-based production
control systems (APIOBPCS). In the APIOBPCS the ordering rule is based
upon forecast demand and the difference between a fixed target level of in-
ventory and the actual level. The ordering rule also takes into account the
work in progress, comparing actual levels with a target value. The pipeline
and inventory levels information in the APIOBPCS are incorporated into
the production order rate by adding a fraction of the difference between
desired work in progress and actual work in progress, and a fraction of the
difference between distributors inventory holding and actual inventory level,
respectively. A full description of the VMI-APIOBPCS is given in [1]. Fi-
gure 3 shows the stability conditions for VMI-APIOBPCS in its parameter
space. The line Ti = 0.5 shows the stability boundary due to flip bifurca-
tions. All other curves in Figure 3 are sets of Neimark-Sacker bifurcation
points. Three sample fixed points are used to illustrate the system’s dyna-
mical response. Figures 3 (a), (b) and (c) show stable, critically stable and
unstable system response, respectively. In order to ensure the robust distur-
bance rejection we guarantee that all eigenvalues of the VMI-APIOBPCS lay
inside the circle of radius R = 0.8 on the complex plane. Figure 4 illustrates
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Figure 3: Bifurcation picture of the VMI-APIOBPCS. Diagram (a), (b)
and (c) show unstable, stable, and critically stable dynamic response of the
actual inventory, respectively.

the modified critical boundaries where the region with radius less than 0.8
is marked by gray color. The dynamic response of the actual inventory is
shown in Figure 4 (a).

We will optimize the VMI-APIOBPCS supply chain model according
to the following three criteria. The motivation and detailed description for
these criteria is given in [2]. The first criterion is the noise of bandwidth,
which is traditionally a useful measure to characterize the frequency response
of a system and hence the production adaptation costs. The second and third
criterion are scaled quadratic errors in inventory and in virtual consumption.
The normal vector method is used to ensure robust disturbance rejection
such that all eigenvalues lay inside the circle of radius 0.8. The result of the
optimization procedure with the normal vector method is shown in Figure 5.

4 Conclusion

We showed that the concept of normal vector method can be applied to the
simultaneous economic optimization and optimal design for disturbance re-
jection of discrete time systems. This concept was successfully demonstrated
on the optimization of the VMI-APIOBPCS supply chain model.
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Figure 4: Modified critical boundaries with R = 0.8 of the VMI-APIOBPCS.
Diagram (a) shows the dynamic response of the actual inventory.

Figure 5: The optimal point of the VMI-APIOBPCS obtained with the
normal vector method and modified critical boundaries with R = 0.8.
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