
Mixed H2/H∞ Model Predictive Control for Unstable

and Non-Minimum Constrained Processes

P. Aadaleesan and Prabirkumar Saha
Indian Institute of Technology Guwahati, Assam, India.

Abstract

In this paper we propose a newer kind of robust model predictive controller
(MPC), namely, Nash game approach based mixedH2/H∞ model predictive control.
Two quadratic objective functions are considered, viz. one for H2 problem and
another forH∞ problem. The resulting open-loop control problem reduces to solving
a pair of coupled non-symmetric algebraic Riccati equations. The pair of coupled
Riccati equations are solved, by finding the invariant subspace spanning eigenvectors
of a specially constructed matrix. The novel control algorithm is demonstrated using
numerical example for non-minimum unstable system.

1 Introduction

Robust model predictive control (MPC) is one of the very demanding area of research in
recent years (Cuzzola et al., 2002; Löfberg. J, 2003; Ramı́rez et al., 2006; Zhao et al.,
2000). Even if there are good models available both for the plant and the disturbances
affecting the plant, any unmodelled phenomenon and/or some unknown disturbances
causing discrepancies in the system’s performance could be taken care by the available
feedback in MPC design. However the open-loop controller is not actually meant for that.
Eventually, the controller should be robustly designed enough to meet such discrepancies
which affects both stability and performance of the process. H∞ robust MPC is a well
known such kind of controller and its analogy to game theoretic strategy is also well
documented in the literature (Başar and Olsder, 1995; Rao, 2000). Moreover, to benefit
from the advantage of combining H2 and H∞, a newer hybrid robust controller called
mixed H2/H∞ controller was developed in early 90’s (Kaminer et al., 1993; Limebeer et
al., 1994). However, this type of robust controller has not be much investigated in the
MPC regime, except recently by Orukpe et al. (2007). In this present work, the mixed
H2/H∞ model predictive control problem is approached from a different perspective, i.e.,
using Nash game approach is proposed. Here, the existence of an optimal saddle point
solution is claimed as the solution of the optimal control problem. The coupled non-
symmetric algebraic Riccati equation resulting from such problem is solved in a systematic
manner, with the construction of a special matrix, as shown in Freiling et al (1999). The
efficacy of the present controller is compared against that of Orukpe et al. (2007) for
non-minimum phase unstable processes, which are of much interest in process industries.



The paper has been organized in the following manner. Section 2 gives the systematic
formulation of the problem. The existence of the optimal saddle point solution is shown
in section 3. The procedure of solving the resulting coupled algebraic Riccati equations
is shown in section 4. In section 5 the efficiency of the proposed method is showed using
numerical example. Finally, in section 6 the conclusions are given.

2 Problem Formulation

Consider the discrete-time linear system affected with process disturbance:

xk+1 = Axk + Buuk + Bωωk, x(0) = x0 (1)

zk =

[
Cxk

Duk

]

where, xk = [x1
k, x

2
k, · · · , xn

k ]T ∈ Rn is the system state, uk = [u1
k, u

2
k, · · · , um

k ]T ∈ Rm is
the control input; ωk ∈ L2,[0,∞] is the unknown but bounded disturbance. Also, A, Bu

and Bω are matrices of appropriate dimensions. Also consider Q = CT C and R := DT D.

The H∞ and H2 control performance are given by equations (2) and (3), respectively,
as

J∞(u, ω) =
1

2

∞∑

k=0

(
xT

k Qxk − γ2ωT
k ωk

)
(2)

J2(u, ω) =
1

2
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k=0

zT
k zk =

1

2

∞∑

k=0

(
xT

k Qxk + uT
k Ruk

)
(3)

where γ2 is the upper bound of the worst case performance (or the attenuation factor for
the disturbance).

The Hamiltonian function (H2) of H2 problem is given as,

H2 := J2(uk, ωk) + p̄T
k+1 [(Axk + Buuk + Bωωk)− xk+1] (4)

=
1

2

(
xT

k Qxk + uT
k Ruk

)
+ p̄T

k+1 [(Axk + Buuk + Bωωk)− xk+1] (5)

where p̄k is the Lagrange multiplier. To minimize the function H2, we need to partially
differentiate H2 w.r.t. its components, say, xk and uk and setting them to zero.

∂H2

∂xk

= 0 : Qxk + AT p̄k+1 − p̄k = 0 (6)

∂H2

∂uk

= 0 : Ruk + BT
u p̄k+1 = 0 (7)

From equations (6) and (7) we have

p̄k = Qxk + AT p̄k+1 (8)

uk = −R−1BT
u p̄k+1 (9)



Assume that p̄k can be given in the form,

p̄k = P I
k xk (10)

where P I
k is an n×n real symmetric positive definite (Lyapunov) matrix. Using equation

(10) into equation (9) gives
uk = −R−1BT

u P I
k+1xk+1 (11)

Now, the H∞ problem’s Hamiltonian function (H∞) is given as,

H∞ := J∞(uk, ωk) + ¯̄pT
k+1 [(Axk + Buuk + Bωωk)− xk+1] (12)

=
1

2

(
xT

k Qxk − γ2ωT
k ωk

)
+ ¯̄pT

k+1 [(Axk + Buuk + Bωωk)− xk+1] (13)

where ¯̄pk+1 is again the Lagrange multiplier. Partially differentiating the Hamiltonian
function (H∞) w.r.t. its components, say, xk and ωk and equating them to zero,

∂H∞
∂xk

= 0 : Qxk + AT ¯̄pk+1 − ¯̄pk = 0 (14)

∂H∞
∂ωk

= 0 : −γ2ωk + BT
ω

¯̄pk+1 = 0 (15)

From the equations (14) and (15) we have,

¯̄pk = Qxk + AT ¯̄pk+1 (16)

ωk = γ−2BT
ω

¯̄pk+1 (17)

Again considering a similar assumption as in equation (10),

¯̄pk = P II
k xk (18)

Using equation (18) in (15) we get,

ωk = γ−2BT
ω P II

k+1xk+1 (19)

Now, from equations (11) and (19) we could write the closed-loop system equation as

xk+1 = [I + BuR
−1BT

u P I
k+1 −Bωγ−2BT

ω P II
k+1]

−1Axk := Φkxk (20)

where Φ is the closed-loop state transition matrix. By substituting equations (18) and (20)
in (16), the discrete algebraic Riccati equation (H∞-DARE) obtained from H∞ problem
is,

P II
k xk = Qxk + AT P II

k+1[I + BuR
−1BT

u P I
k+1 −Bωγ−2BT

ω P II
k ]−1Axk (21)

Similarly, the discrete algebraic Riccati equation (H2-DARE) obtained from H2 problem,
by substituting equations (10) and (20) in (8),

P I
k xk = Qxk + AT P I

k+1[I + BuR
−1BT

u P I
k+1 −Bωγ−2BT

ω P II
k ]−1Axk (22)



3 Minimal values of the H2 and H∞ cost functions

In this section the minimal values of the cost functions are given. Let us rewrite the
closed-loop system equation with the feedback gain matrices for the system given in (1)
as;

xk+1 = (A + BuKu + BωKω) xk (23)

which could be otherwise given as,

xk+1 = Āωxk + Buuk (24)

xk+1 = Āuxk + Bωωk (25)

where, Āω := A − BωKω and Āu := A − BuKu. Assume that there exists an optimal
feedback gain matrix Kω from solving a H∞ cost function and Ku from solving a H2 cost
function.

Before finding the minimal value of the function, let us rewrite some of our earlier
expressions in a form that suits with our new format of the closed loop equation as shown
in equations (24) and (25). The H2 problem’s Hamiltonian function (H2) is rewritten as,

H2 := J2(uk, ωk) + p̄T
k+1

[
(Āωxk + Buuk)− xk+1

]
(26)

which eventually yields,

∂H2

∂xk

= 0 : p̄k = Qxk + ĀT
ω p̄k+1 (27)

Therefore, the equation (24) from using equations (11) and (10),

xk+1 = Āωxk −BuB
T
u P I

k+1xk+1[
I + BuB

T
u P̄ I

k+1

]
xk+1 = Āωxk (28)

Likewise, the H∞ problem’s Hamiltonian function (H∞) is also rewritten as,

H∞ := J∞(uk, ωk) + ¯̄pT
k+1

[
(Āuxk + Bωωk)− xk+1

]
(29)

which yields,
∂H∞
∂xk

= 0 : ¯̄pk = Qxk + ĀT
u
¯̄pk+1 (30)

The equation (25) from using equations (19) and (18),

xk+1 = Āuxk + γ−2BωBT
ω P̄ I

k+1xk+1[
I − γ−2BωBT

ω P̄ I
k+1

]
xk+1 = Āuxk (31)



3.1 Minimal value of the H2 cost function

To find the minimum value of the H2 control performance, premultiply both sides of the
equation (27) by xT

k and using (10), we get,

xT
k P I

k xk = xT
k Qxk + xT

k ĀT
ωP I

k+1xk+1 (32)

Substituting equation (28) into the previous equation, we get,

xT
k Qxk = xT

k P I
k xk − xT

k+1P
I
k+1xk+1 − xT

k+1P
I
k+1BuB

T
u P I

k+1xk+1 (33)

From equation (11), we have

uk = −BT
u P I

k+1xk+1

⇒ uT
k uk =

(−xT
k+1P

I
k+1Bu

) (−BT
u P I

k+1xk+1

)

= xT
k+1P

I
k+1BuB

T
u P I

k+1xk+1 (34)

By adding equations (33) and (34), we have

xT
k Qxk + uT

k uk = xT
k P I

k xk − xT
k+1P

I
k+1xk+1 (35)

By substitution of this equation into the equation of J2(u, ω) gives,

J2(u
∗, ω∗) =

1

2

∞∑

k=0

xT
k P I

k xk − xT
k+1P

I
k+1xk+1

=
1

2
xT

0 P I
0 x0 (36)

Equation (36) is due to the cancelation of the terms when the summation is expanded
over the time horizon k = [0,∞) and also using limk→∞xk = 0. Note that the above
assertion starts and is extended to the control law formulation with the assumption that
there exists an optimal feedback gain matrix for the other (maximizing) player ω∗k. So the
H2 performance index given in equation (3) can be taken as J2(u, ω∗). From the above
argument and the result shown in equation (36), it could be directly stated that,

J2(u
∗, ω∗) ≤ J2(u, ω∗) (37)

3.2 Minimal value of the H∞ cost function

The minimal value of the H∞ cost function is found out in the following. Premultiplying
equation (30) by xT

k and using (18) we get

xT
k P II

k xk = xT
k Qxk + xT

k ĀT
u P II

k+1xk+1 (38)

Using equation (31) in the above equation, we get

xT
k P II

k xk = xT
k Qxk + xT

k+1[I − γ−2P II
k+1BωBT

ω ]P II
k+1xk+1

xT
k Qxk = xT

k P II
k xk − xT

k+1[I − γ−2P II
k+1BωBT

ω ]P II
k+1xk+1 (39)



From equation (19), we can have

ωT
k ωk = γ−4xT

k+1P
II
k+1BωBT

ω P II
k+1xk+1 (40)

Multiplying equation (40) by γ2 and then subtracting it from equation (39) gives,

xT
k Qxk − γ2ωT

k ωk = xT
k P II

k xk − xT
k+1P

II
k+1xk+1 (41)

Using the previous equation in the equation of J∞(u, ω) i.e., the H∞ cost function gives,

J∞(u∗, ω∗) =
1

2

∞∑

k=0

xT
k P II

k xk − xT
k+1P

II
k+1xk+1

=
1

2
xT

0 P II
0 x0 (42)

Using the similar argument as given in section 3.1, rather, the other player being the
minimizing player, u∗k, with the assumption that there exist an optimal feedback gain
matrix (Ku) for the minimizing player, the H∞ cost function can be taken as J∞(u∗, ω).
Moreover, from the result of the equation (42), the following condition holds good;

J∞(u∗, ω∗) ≤ J∞(u∗, ω) (43)

So the saddle point of the Nash game is ensured once the coupled algebraic Riccati
equations (AREs), given in equations (22) and (21), are solved for their solutions.

4 Solution of the coupled AREs

Solving the pair of coupled AREs to get the values of the Lyapunov function matrices,
P I and P II will fetch us the optimal (saddle point) solution of the Nash game approach
to robust control of the linear system (1). Freiling et al. (1999), has given the necessary
condition(s) that need to be satisfied, so as to get the solution of the AREs. From the
AREs in equations (22) and (21) and the closed loop system equation (20), the following
theorem can be stated.

Theorem 4.1 If S(P I , P II) := span




I
P I

P II


 ⊂ C3n×n is an invariant subspace of MNa

with det(I + S1P
I + S2P

II) 6= 0 then

(
P I

P II

)
is the solution of the AREs, such that




x
p̄
¯̄p


 (k + 1) = MNa




x
p̄
¯̄p


 (k), where, S1 := BuR

−1BT
u , S2 := Bωγ−2BT

ω and

MNa :=




A−1 A−1S1 A−1S2

QA−1 AT + QA−1S1 QA−1S2

QA−1 QA−1S1 AT + QA−1S2


 .



Corollary 4.1 If span(v1, · · · , vn) is an invariant subspace such that detX 6= 0 for


X
Y1

Y2


 := (v1, · · · , vn), then

(
P I

P II

)
:=

(
Y1X

−1

Y2X
−1

)
is the solution of the AREs,

if det(I + S1P
I + S2P

II) 6= 0.

Using the above theorem and the immediate corollary, the coupled algebraic Riccati
equations resulting from the open-loop Nash games can be solved, enabling us to obtain
the mixed H2/H∞ MPC using Nash game approach.

Remark 4.1 In the present study, we have Q1 = Q2 := Q.

Remark 4.2 The solution of the coupled AREs could exist if and only if the system’s
states are completely controllable and observable. The interested readers are refereed to
Freiling et al. (1999) for further details.

The invariant subspace spanning eigenvectors of MNa are the required solution of
the coupled Riccati equations (22) and (22) as per Corollary 4.1, such that the closed
loop eigenvalues lies within the unit circle (i.e., eig(A + BuKu) ≤ 1, where Ku :=
−R−1BT

u P I
k+1Φkxk from equation (11) and (20)).

5 Numerical Example

The performance of both the control algorithms is checked for a non-minimum phase
unstable system. The discrete time state-space model of such a system with sampling
time, T = 0.1 is taken

A =

[
2.3150 −1.3500
1.0000 0.0000

]
Bu =

[
1
0

]
Bω =

[
1
1

]
C = [0.1133 − 0.1191]

The system is subjected to a constant disturbance, ω = 0.1. The poles and zero of the
system are 1.1575± 0.1010i and 1.0512, respectively. With γ2 = 100 and x0 = [1 0]T , the
performance of Nash game approach is compared against Orukpe et al.’s algorithm and
the results are furnished in Fig. 1. Although the present approach gives an oscillatory
response (which could be improved by decreasing the input weighing matrix), it gives
highly appreciable response than the other mixed H2/H∞ MPC algorithm.

6 Conclusion

A Nash game theory based mixed H2/H∞ robust MPC is proposed. The coupled alge-
braic Riccati equations resulting from this approach is solved efficiently by constructing a
special matrix, and from finding its generalized eigenvectors that span its invariant sub-
space (Freiling et al., 1999). The performance of the proposed robust predictive control
algorithm is compared against the one proposed by Orukpe et al. (2007). The proposed
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Fig 1 Comparison of Nash game approach mixed H2/H∞ robust MPC (solid and
dashed lines) against the mixed H2/H∞ MPC proposed in Orukpe et al (dash-dot and

dotted lines) for non-minimum unstable system for γ2 = 100.

algorithm gives better results when used for non-minimum, unstable systems, which are
common in many process industries. It should be noted that the present algorithm could
only be used for systems, whose states are both completely controllable and observable.

In the present work, the algorithm has been developed only for unconstrained case.
Enhancement of the present work to handle constraints, especially input constraints, is
underway.
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6. Limebeer, D.J.N., Anderson, B. D. O. and Hendel, H. (1994) ”A Nash
game approach to mixed H2/H∞ control”, IEEE. Trans. Auto. Contr., 39 (1), pp.
69-82.

7. Orukpe, P. E., Jaimoukha, I. M. and El-Zobaidi, H. M. H. (2007) ”Model
predictive control based on mixed H2/H∞ control approach”, Amer. Contr. Conf.,
New York, USA.

8. Ramı́rez, D. R., Alamo, T., Camacho, E. F. and de la Peña, D. M. (2006)
”Min-max MPC based on a computationally efficient upper bound of worst case
cost”, J. Process Contr., 16, pp. 511-519.

9. Rao, C. V. (2000) ”Moving horizon strategies for the constrained moni-
toring and control of nonlinear discrete-time systems”, Ph.D. Dissertation, Univ.
Wisconsin-Madison.

10. Zhao, H., Li, W. and Bentsman, J. (2000) ”H∞ prediction and uncon-
strained H∞ predictive control:multi-input-multi-output case”, Int. J. Robust and
Nonlin. Contr., 11(1), pp. 59-86.


