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Introduction 
 Man’s war against dangerous afflictions has led to the development of potent 

formulations and requires complicated dosage patterns. They require controlled and targeted 

delivery to maximize therapeutic efficacy and minimize side-effects. Chemotherapy has been 

recognized as a successful means of arresting cancer, which is the third biggest killer among 

humans. Cancerous tumors are characterized by their rapid spread across the diseased tissue and 

successively deteriorating conditions. However, it necessitates repeated dosage at specific times, 

and conventional delivery methods result in unnecessary delay in reaching the targeted location 

and expose other organs to the effect of the drugs. The drug delivery is thus desired to be 

precisely targeted and controlled.  

This has resulted in previous attempts at designing novel, bio-implantable, polymer-

coated delivery devices that can release the drug at a specified rate. We design and model a novel 

device that allows electrically regulated release of an ionic drug through an electroactive 

polymer membrane into a tumor-affected tissue. Doped electro active polymers like polypyrrole 

show considerable ability to conduct ions and even behave as a switch by alternating its oxidized 

and reduced states on reversal of electric potential. 

Our drug delivery device consists of a cylindrical capsule comprising of a drug reservoir 

containing the ionic drug solution and a set of batteries for creating the desired electric field. The 

entire capsule is surrounded by a layer of selectively doped electroactive polymer. The device 

has been implanted at the center of the tumor such that the tumor has progressed symmetrically 

from all sides. The anionic drug diffuses out under the action of the electric field, permeates 

through the electroactive membrane as it reacts with the charged polymer groups and is released 

into the tissue, where it reacts with the biological cells. 

1. Modeling 
 The transport of the anionic drug into the affected tissue occurs due to three factors: the 

concentration gradient, the electric field created by the batteries and the reaction of the anionic 

drug with the polymer groups inside the doped-polymer membrane.  

 

1.1 The potential distribution: The potential field distribution is not an independent entity but is a 

function of the distribution of the ions in the medium as also the strength of the fixed charges 

within the membrane. This distribution is obtained by application of the Poisson-Boltzmann 

equation, which is given by:  
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where, ψ is the potential distribution, ρ ∗  is the fixed charge density, ρ  of the surrounding 

membrane normalized over  the entire space of the reservoir, i.e. m
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the volumes of the membrane and solution respectively,  no is the no. density of ions in the drug 

solution and q is the basic unit of electric charge. Eq.(1.1) is solved to get the potential 

distribution. 

 

1.2 Transport in the reservoir: The transport in the drug reservoir in the presence of the electric 

field is given by the Nernst-Planck equation which may be expressed as: 
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Some assumptions are made for the solution of this equation analytically. They are (i) the drug 

reservoir has infinite amount of drug, i.e., there is no depletion of drug within the reservoir, (ii) 

there are no convection effects in the system and (iii) the membrane is thin compared to the 

diameter of the reservoir. Based on these assumptions, the solution of eqn. (1.2) is given by 
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1.2.2 Electric double layer: The Nernst-Planck-Poisson (NPP) system of model equations was 

used to model the system during the positive scan.  For the negative scan, the sign of the 

potential will be reversed and there will also be the formation of the electric double layer. We 

use the modified-Stern model to quantify the effect of the electric double layer on the applied 

electric potential and the Nernst-Planck-Poisson-Modified Stern (NPPMS) equation is 
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solving which we get: 
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1.3 Transport in the polymeric membrane: For modeling the transport in the membrane, we do 

not need to find out a separate potential distribution. Since the membrane (��~ 10
-3

m) is very thin 

compared to the reservoir, we can assume the potential to follow a linear profile, with the same 

slope as that near the membrane. 

 
1.3.1 Positive scan: The drug transport within the membrane is modeled with the same Nernst-

Planck (NP) equation, with an extra reaction term being included due to the interaction between 

the drug and polymer group   
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Taking we have the solution of Eq.(1.8) as:                                                                               
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1.3.2 Negative scan: The same form of the NP equation is used here for the drug D but with the 

sign of the potential reversed. 
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For the complex C, we can write: 
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Putting,  we have the solution of Eq.(1.10) as: 
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1.4 Transport and drug reaction in normal tissue: The tissue is considered separated into two 

compartments – the normal tissue and the tumor-affected tissue. The dimensions of the tissue 

being too large compared to that of the drug reservoir, the system can be approximately 

described by Cartesian coordinates. 
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The reaction of the drug is modeled by Michaelis-Menten kinetics as which for 

low values of concentration can be approximated by a 1
st
 order equation,         

given by: 
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1.4.1 The negative scan:  The governing equation along with the boundary conditions is: 
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The solution using suitable boundary conditions is given by 
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1.4.2 The positive scan: The modeling for the positive scan will be carried out in much the same 

way as in the negative scan, but we use a Neumann boundary condition at the membrane-tissue 

interface and a Dirichlet condition at the other boundary. The spatial concentration profile at the 

end of the negative scan is used as the initial condition for the positive scan. The equation is 
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The solution is 
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1.5 Transport and drug reaction in tumor-affected tissue: The drug diffusivity, D should have a 

lower value in the tumor region.  
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1.5.1 The negative scan 

The corresponding solution for the tumor-affected region for the negative scan is: 
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1.5.2 The positive scan 

The corresponding solution for the tumor-affected region for the positive scan is: 
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2. Results and discussions 

The results are shown for the complete 4 compartment model having the drug reservoir, the 

membrane, the normal tissue and the tumor-affected tissue. Diffusivity of the drug in the four 

zones – the reservoir, the membrane, the normal tissue and the tumor-affected tissue are taken as 

1.6 × 10
-6

 m
2
/sec, 1 × 10

-9
 m

2
/sec, 1.2 × 10

-6
 m

2
/sec and 1.2 × 10

-8
 m

2
/sec respectively. The 

voltage scan times for both positive and negative scans is taken as 5 seconds. Drug concentration 

in the reservoir solution is 0.1M and the dopant concentration in the membrane is 10M. The 

membrane chosen is polypyrrole. The drug and biological data conform to the diffusion of the 

anti-tumor drug doxorubicin in rat-liver.  

2.1 Drug concentration: Figures 2.1 and 2.2 show the spatial plots of drug concentration at 

various times for the 4 compartments. The fast disappearance of drug in the membrane in the 

positive scan is due to the fast ionic reaction which converts the drug into the neutral complex. 

The reverse reaction is also fast and hence a constant profile is obtained in the same region 

during the negative scan, as the fast evolving anions are unable to diffuse out.  

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-2.1: Spatial drug concentration plots during the positive scan for (a) reservoir, (b) membrane, (c)   

normal tissue and (d) tumor-affected tissue 

Fig 2.2: Spatial drug concentration plots during the negative scan for (a) reservoir, (b) membrane, (c)   normal 

tissue and (d) tumor-affected tissue 
 



  3. Conclusion 
 Our modeling and simulation quantifies the drug concentration levels under normal 

conditions (characterized by the normal values of the parameters) and also for different 

parametric values. This can serve as an effective tool for predicting the drug level for a particular 

patient and help an oncologist make his decision regarding the optimal parametric values for a 

particular patient and his condition.  

Voltage: Increase in voltage causes an increase in drug delivery rate and is the only option for 

drugs having a very high depletion rate. It is also an option for rapid drug supply in emergency 

situations. 

Scan times: The study shows that the drug is stored in the membrane during positive scan which 

is released during the negative scan. Increase in positive scan times, with short negative scan 

times can supply the drug at high rate in short bursts, which may be required considering the 

physiological condition of the patient. 

Membrane thickness: Reduction of membrane thickness increases the rate of drug delivery but 

also reduces the amount of drug that can be stored in the membrane during the positive scan. The 

thickness should be judiciously chosen keeping in mind whether the patient needs higher rate of 

drug supply or more amount of drug slowly over a longer period.  

Therapeutic concentration: It is found that the solutions of the drug transport models predict a 

relation between various parameters of the boundary conditions. The therapeutic concentration – 

which in this model is a boundary condition – is also a design parameter that needs to be decided 

upon by the oncologist. So we have a relation between the therapeutic concentration required for 

the particular physiological condition and the voltage to be applied for the cure. 
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