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Introduction 

Acrylic resins for automotive coatings are of great interest to the polymer industry. Most 
automotive coating resins are complex copolymers primarily composed of styrene, acrylate, and 
methacrylate monomers.  A “starved-feed” feeding policy is implemented that involves adding 
the initiator and monomer to the reactor at a constant rate over several hours. This feeding 
strategy is employed at high temperature conditions to ensure uniform average molecular weight 
and copolymer composition while operating at relatively low solvent levels. At these conditions 
of low monomer concentrations, high instantaneous conversion is achieved which results in 
polymer with relatively constant properties requiring minimal on-line measurement. 
 

Operation of the robust reactor is at the cost of long batch time as well as drift in both 
polymer molecular weight and composition in the early stages of the batch. Therefore, it is 
important to improve reactor efficiency of quality monitoring and operation which will enhance 
product quality, production rates, safer operation, and subsequently improve profits. A dynamic 
model is developed to test the on-line optimization algorithm for the starved-feed free-radical 
copolymerization of butyl methacrylate and styrene (BMA/ STY) system, which reduces batch 
time while improving product uniformity. Three case studies are discussed to show the result of 
the optimization technique. 
 

I. Description of System 
Solution free-radical BMA/STY copolymerization was performed under starved-feed 

condition at 138•C. Monomer is added to the reactor at a constant rate over 6 hours at different 
mass ratio (feed compositions) with tert-butyl peroxyacetate initiator fed at a constant mass ratio 
of 2.0 wt% relative to monomer feed. The process is illustrated in Figure 1.  

 

 
Figure 1: Schematic of semibatch reactor system. The flow rates of butyl methacrylate (BMA) and styrene (STY) 
monomers and tert-butyl peroxyacetate (TBPA) initiator can be independently manipulated. 
 



The monomer and polymer compositions were shown [1] to be relatively uniform throughout the 
reaction in the semi-batch reactor as the free BMA and STY monomer levels were low for the 
whole experimentation.   

 
II. Process Model 

A full model [1] was developed for off-line optimization and product development of the 
present starved-feed feeding method containing a defined set of kinetic mechanisms for semi-
batch high temperature BMA/ STY copolymerization. For this study, a mathematical model was 
formulated based on a reduced set of kinetic mechanisms embedded into the overall material 
balances in order to capture the basic process performance to design an efficient and robust 
system to control polymer quality. Methacrylate depropagation, styrene thermal initiation, and 
penultimate propagation kinetics were not incorporated in the mechanistic set.   

 
Under standard assumptions such as perfect mixing, constant physical properties, quasi 

steady-state assumption (radical stationarity) and long chain hypothesis, mass balances on the 
initiator, solvent and monomers, and moment balances on the radical (live) and dead polymer 
chains yield the isothermal mathematical model for the semibatch system summarized below. 
The resulting set of differential equations describing the semibatch isothermal copolymerization 
is: 
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where 1( )x t  and 2 ( )x t  represent the total mass of unreacted BMA and STY in the reactor, while 

3 ( )x t  is the mass of unreacted initiator. States 4 ( )x t  and 5 ( )x t  represent the mass of BMA and STY 
contained in the polymer chains, and the number of moles of polymer chains is represented 
by 6 ( )x t . 
 

The reduced model derived in this work capture the essential dynamics of the full model 
and the experimental data [1]. The primary references for these coefficients and parameters are 
contained in the work of Li and Hutchinson [1]. Various quantities of interest can be calculated 
from the states. For the semibatch reactor, monomer conversion is defined as the mass of 
polymer in the reactor divided by the mass of monomer and polymer: 
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Number-average molecular weight and copolymer composition (BMA mole fraction), denoted by 
nM  and F , are calculated as follows: 
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An objective of the starved-feed strategy is to keep these latter two quantities uniform 

throughout the course of the semibatch reaction, while maintaining high conversion in the 
reactor. Thus, the objective function is defined so as to minimize the batch time and maintain the 
copolymer molecular weight ( nM ) and composition ( F ) at their targets values throughout the 
batch while also satisfying path and terminal constrains on the states and/or the controls. 
 
III. Real-Time Optimization Mechanism 

An optimization technique [2] is utilized to design a control structure that satisfies the 
specific objectives of the system under study discussed in the previous section. The feedback 
measurements are incorporated directly into the optimization procedure rather than into a low 
level tracking controller making it an online optimization instead of an online re-optimization, 
therefore eliminating the need for controller design and related difficulties. The technique used in 
this study is different from existing online optimization techniques ([3],[4],[5],[6]) as it involves 
minimal computational requirements, provides stable closed-loop performance and does not 
require knowledge of a nominal optimal solution. 
 

The control problem undertaken in this study is to find the input trajectory that solves the 
dynamic optimization problem for some user defined cost function J.  A dynamic optimization 
problem is formulated describing the feed flow rates parameters and the time interval lengths as 
decision or optimizing variables. For tracking purposes the objectives for nM  and F  have been 
aggregated into a single scalar function while defining the batch time as a terminal objective 
function: 
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where J  is the objective function to be minimized, and spM  and spF  are the target values for 
molecular weight and composition respectively. The set of weights to scale the objectives are 
defined by 1 2 3, ,ω ω ω . The optimization is subject to process dynamics (1) and the constraints 
described below. 

 

A suitable means to limit potential heat release is to place constraints on unreacted 
monomer in the reactor. The monomer and initiator levels in the batch must not exceed certain 
maximum limits to meet safety constraints related to heat release. These constraints are described 
by: 

{ }max
30 ( )  ,  ( ) 0  1, 2,3k k kx t x x t k+≤ ≤ ≥ ∈                            (3) 

Actuator limitations often dictate control constraints, whereas non-negativity of flow rates is a 
common input constraint. 

{ }max0 ( )  ,   1, 2,3k ku t u k≤ ≤ ∈         (4) 



Terminal constraints are commonly related to safety or productivity considerations. With regard 
to the latter, the desired mass of polymer at the batch end is specified as an endpoint constraint: 

4 5( ) ( ) ( )f f pol fx t x t m t+ =                                (5)  
 
The control functions are parameterized in three distinct strategies. The first (Case 1) and 

simplest strategy considers using a single constant: ( )  k ku t u= ( 1,2,3k = ) through the entire batch 
time horizon subject to a starved-feed operation. The corresponding control parameterization is 
given by:  

1 1 2 2 1 3 3 1( ) , ( ) , ( )u t u t u tθ θ θ θ θ= = =                                    (6) 
The second parameterization (Case 2) considered in this work allows for exponential feeding in a 
starved-feed operation. This parameterization is written as follows: 

2
1 1 2 3 1 3 4 1( ) , ( ) ( ), ( ) ( )tu t e u t u t u t u tθθ θ θ= = =                      (7)  

The final parameterization (Case 3) allows for independent exponential feeding strategy. The 
objective is to verify the cost of utilizing a starved-feed strategy in practice. This slightly more 
complex parameterization is given by: 

62 4
1 1 2 3 3 5( ) , ( ) , ( ) tt tu t e u t e u t eθθ θθ θ θ= = =                         (8)  

Note that eq.(8) can be reduced to either eqs.(7) or (6) for specific choices of the parameters 
1 2 3 4 5 6( , , , , , )θ θ θ θ θ θ . 

 

The objective of the optimization technique is to steer the system to the local optimum of 
the user-defined cost eq.(2) subject to a specific parameterization (i.e. from eqs. (6), (7) and (8)) 
while responding in real-time to changes in plant operation. The technique cannot be used to 
recover the actual optimal control but provides suboptimal control strategies and allows the 
adjustment of the parameters of the input parameterization in a way that provides continuous 
improvement with respect to the user-defined cost function. Constraint satisfaction is also 
satisfied. 
 

The constrained problem is transformed to the minimization of the unconstrained cost: 
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where the m path constraints jw  are given by: 
max

3,  ,   1, 2,3k k k k kw x x w x kε ε+= − − + = + =   
control constraints by: 

max
6 9,  ,   1, 2,3k k k k kw u u w u kε ε+ += − + + = + =   

and end point constraints by: 

4 5 ( )f pol fw x x m t= + −   
 
Numerical values for the bounds of the path constraints are given with the cases studies. The 
integral part of the modified cost is considered as an additional state such that: 



∑
=

=

+−−+−==
mz

j
j

spsp

n
f w

F
F

M
Mt

d
dxx

  

1
1

2
2

2
1

7
7 )log())1)(()1)((()( εμτωτω

τ
τ  (10) 

 

Finding a locally optimal solution can often be achieved through appropriate initial 
guesses to the optimizer and the use of realistic constraints. However, to find a feasible set of 
initial guesses is sometimes not a trivial task due to the interior feasible point method (barrier 
function) used. The barrier method requires that the initial guess of the solution to be strictly 
feasible. In addition, ill conditioning inherent to the nonlinearity of the reactor system may play a 
role in the sensitivity of the solution to initial conditions. 

 
The constrained parameter set }0)),(),((|{ ≥ℜ∈=Ω ttxw pN θϕθ  describes a convex subset 

of Nℜ . It is assumed that the parameters evolve on a compact subset γ  of Nℜ , and that the cost 
functional NNJ ℜ→ℜ:  is convex and continuously differentiable on γ . The assumptions made 
up to this point guarantee a local optimization of the constrained problem exists and that the 
gradient can be used to achieve that minimization [2].  

 

An interior point method with penalty function is used to include the constraint costs. 
The interior point method incorporating a log barrier function enforces the state and input 
constraints (essentially converting the constrained optimization problem into an unconstrained 
one) while the end-point constraints are incorporated through a terminal penalty function. In the 
remaining equations obvious notation has been omitted. Thus, let the path cost with barrier 
function be stated as follows: 
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To emphasize that the optimization is based on the current conditions, the new cost functional 
with interior point method and penalty function is stated as: 
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where ],[ ftt∈τ  is the integration variable and nc  is the number of inequality constraints. The 

parameter 01 >μ  is the barrier parameter for the logarithm term, 0>M  is the penalty term and 

0>ε  is a constraint relaxation factor (back-off) that prevents the barrier term from singularity. 
 

The formulation uses a gradient-based method for the solution of the dynamic 
optimization problems in real-time, with a straightforward diagonally scaled steepest descent 
parameter update law of the form: 

),Proj( wipJ Ω∇Γ−= θθ  (13) 

where 0>Γ  is the scaling matrix (referred as a gain matrix) to be defined later. To avoid 
divergence of the update law a projection algorithm is used. This guarantees that the parameters 
remain in a convex set }||||  |{ ηθθ ≤ℜ∈=Ω N

w  for some 0>η  while assuring that the cost 
decreases until the optimal profile parameters are determined. 



 
A Lyapunov-based method was used to show convergence to the local minimizers of a user-
defined cost functional. The projection algorithm is given by: 
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, γ  is a compact subset of nℜ  where the parameters are assumed to 

evolve, ( ) TP θ θ θ η= − , θ  is the vector of input parameters and η  is chosen such that ||θ ||≤ η . 
 
IV. Case Studies 
 Cases 1-3 illustrate the optimization of the BMA/STY system relative to the conventional 
starved feed strategy for the 50:50 BMA: STY mass ratio. Cases 1 to 3 follow experimental initial 
conditions (monomer and initiator feed rates) used in the experimental study of [1] and 
summarized in Table 1. In Table 1, fed

TBPAm , fed
BMAm , and fed

STYm  represent the total mass of initiator, BMA 
and STY fed to the reactor to the final batch time of ft . The mass of polymer produced at the final 
batch time is ( )pol fm t , taken as the terminal (end-point) constraint in the optimization routine and 
set so that the final weight fraction of polymer in solution is 0.7 at the end of the batch. 

Table 1: Conventional starved feed strategey used in [1] 
Results 50:50 

BMA:STY 
(wt ratio) 

75:25 BMA 
STY  

(wt ratio) 
fed

TBPAm  , Kg 9.7E-03  9.7E-03 

fed
BMAm  , Kg 2.46E-01  3.6E-01 

fed
STYm  , Kg, 2.46E-01  1.23E-01 

ft  , min 360  360 

)( fpol tm  0.474  

 

0.483 

 
For all three cases, the target values of FA and Mn (g/mol) are 0.43 and 11 respectively. The 
constraints for the states and input variables are set to: [ ] [ ] 4

1 2 3( ) 0,0.02 , ( ) 0,0.02 , ( ) 0,5.0 10x t x t x t −⎡ ⎤∈ ∈ ∈ ×⎣ ⎦  

and
  
ui (t) ∈ 0,0.01⎡⎣ ⎤⎦ , i = 1,2,3.  The algorithm parameters for all three cases are as follows. The adaptive 

gain (k) in the steepest descent law used by the algorithm is 0.0001. The end constraint 
parameter M is set to 108. This large value ensures that endpoint values are strictly enforced. The 
barrier function parameters, μ  and ε , are set to 0.1 and 10-7, respectively. The initial conditions 
for the system are 1 2 3 4 5 6(0) (0) (0) (0) (0) (0) 0.x x x x x x= = = = = =  

 



Table 2 Performance metrics for the three cases. 
Case  

  
mpol (t f ) (kg)    

t f  (sec)  Jip (t f )  

1 0.47386 15335 1.8988 ×105

2 0.47383 15479 1.8565 ×105

3 0.47383 15234 1.7706 ×105

 

As summarized in Table 2, the more general parameterization from Case 3 provides some 
improvements in performance over the simpler Cases 1 and 2.  All cases provide a significant 
improvement over the experimental batch time of 21600 seconds. In all three cases, the 
optimization routine successfully implements a feasible locally optimal strategy for the given 
parameterization that 1) improves the nominal performance of the fed-batch system and 2) 
enforces constraint satisfaction in the monomer feed. Figure 2 compares the results obtained 
using the real-time optimization technique for Case 3 to the nominal results from the feed-rate 
used in [1] that resulted in a batch time of 21600 seconds. These curves are labeled “simulation” 
on the plots. 

 

 
Figure 2: Performance of the real-time optimization control system and the nominal fed-batch strategy. 
 

Figure 3 shows the state trajectories for Case 3. It can be seen that the real-time optimizing controller 
pushes x3(t) to its upper limit. Relaxation of this constraint should result in further reduction in batch 
time. Figure 4 shows the corresponding input trajectories. As expected, the effect of the constraint 
in x3(t)  is shown in the trajectory for u3(t) . On average the real-time optimization routine requires 
1 to 10 msec of computation for every second of operation. The corresponding controller is 
therefore viable for implementation. 



 
Figure 3: State trajectories for Case 3. The nominal simulation based on the experimental conditions in [1] are also 
shown. 
 

 
Figure 4: Input trajectory for Case 3. 
 

V. Conclusions 
Considerable improvements in polymer quality (less drift in molecular weight and 

copolymer composition) and productivity (batch time reduction) can be obtained while satisfying 
the constraints imposed to the system. Moreover, this novel technique and the use of a reduced 
order model result in low computational effort that can be further exploited through more 
complex input parameterization and/or the use of a more complex model to improve the 
accuracy of the model predictions. The actual implementation will be the main focus of further 
experimental study. Ongoing research in this area has demonstrated the promise that a viable 
estimation routine can be developed and implemented.  
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