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Abstract: 
 

In the last three decades the simultaneous synthesis of process and utilities systems and 

process optimization and HEN synthesis has become very important research field in chemical 

engineering. These large systems are difficult to solve and a lot of simplifying assumptions are 

still needed to keep these problems mathematically tractable especially in industrial applications. 

In this paper a hybrid method in which we are integrating constraint propagation with 

mathematical programming on the stand-alone modeling level for solving large energy systems 

synthesis is introduced. Such integration is illustrated using new formulation for solving HEN 

synthesis targeting problem under all possible combinations of process modifications and a CP 

application numerical example in which CP is used as a preparatory step to NLP solution for the 

total annualized cost minimization of HEN synthesis problem.  

Keywords: Interval Constraints Propagation; Constraint Programming, Mathematical Programming, Process 
Synthesis, Constraint Satisfaction 
 
 
Introduction: 
 

Worldwide industrial community is ravenous to producing more-with-less through cost 

effective but benign new products and processes. Chemical process industry is known as one of 

the most energy-intensive manufacturing sectors in the industrial community. Waste heat 

recovery applications, as old as the industry itself, are nowadays a must. Many techniques 

emanated in the early seventies for systematic heat integration has been in use since in the 

industrial community and are now gaining more momentum. Finding any small room for 

improvement in the newly designed processes that can bring some value towards energy saving 

and GHG emissions reduction will be more than welcomed. For non-constrained and non-

thermodynamic constrained processes process design and operation alternatives are cumbersome 



and the number of alternatives that include different process structures, design parameters and 

operating conditions result in a combinatorial optimization problem.  

Constraint Programming field, known to be a little younger than mathematical 

programming, is getting every day ground in reducing the computational effort needed to solve 

combinatorial optimization problems. A crucial component in Constraint Programming approach 

is the Constraint Propagation. 

 Constraint Propagation (CP) is a very efficient method for reducing the search space of 

combinatorial search and optimization problems and has become more important in the last two 

decades. The basic idea of constraint propagation methods is to detect and remove inconsistent 

variable(s) assignment(s) that can not participate in any feasible solution through the repeated 

analysis and evaluation of the variables, domains and constraints describing a specific problem 

instance. 

Constraint logic Programming or sometimes called Propagation (CLP), as a technique used in 

Constraints Satisfaction (CS) applications, is a unique problem-solving paradigm that establishes 

a clear distinction between two pivotal aspects of any problem; a precise definition of the 

constraints that define the problem to be solved, and the algorithms and heuristics enabling to 

solve it. CLP is increasingly being used as a problem-solving tool for many engineering 

problems. It was originally developed for solving CS feasibility problems but has recently been 

used in optimization problems too. 

Grossmann and co-workers have combined the power of both Constraint Programming 

and MILP on the algorithmic level to solve continuous time scheduling of multipurpose batch 

plants [1].They used MILP to optimize the high level decisions and Constraint Programming to 

obtain feasible detailed schedule. Hooker and co-workers in 2002, referenced by Grossmann et 

al., specified two ways to integrate Constraint Programming and mathematical programming. One 

by combining them on the modeling level and try to find the algorithm that can solve such hybrid 

model. The second by decomposing the original problem into two sub-problems; one is MILP 

and the other is Constraint Programming. Each model is solved separately and information 

obtained from one help solving the other.  

Essentially, combinatorial optimization problems can be posed as multi-level 

optimization one. Sub-problems can be solved using constraints propagation for feasibility 

checks. The decision maker inputs and the solutions of the sub-problems insights can be fed to 

another MP formulation to find the details of the final solution.  

The HEN synthesis problem under all possible combinations of process parameters modifications 

is a quite large problem. Upon decomposition, to targeting and synthesis sub-problems, it can be 



easily tackled using CS to find under all possible combinations of process changes the heating 

and cooling utilities minima and maxima targets.  

In this paper a hybrid method in which we are integrating constraint propagation with 

mathematical programming for solving large energy systems synthesis is introduced. Such 

integration is illustrated using new formulation for solving HEN synthesis targeting problem 

under all possible combinations of process modifications sub-problem. A second example for 

integrating CP and MP; is using CP and NLP for total annualized cost minimization of HEN. It is 

a numerical example for solving minimum area HEN sub-problem to show the use of CP as a 

preparatory step to MP problem solution. 
 
 
Interval constraint propagation at a Glance:  

Interval mathematics 

Because floating-point computational errors need to be estimated and controlled, interval 

analysis has grown considerably in the past 30 years. Interval arithmetic deals with processing 

intervals that bound real numbers. Consider a real variable, x, bounded by two other numbers, xl 

≤  x ≤  xu. One can define an interval X such that x ∈  X where X = [xl , xu]. Similarly, an 

interval Y can be defined to include a real variable y such that y ∈  Y.  An interval arithmetic 

operation, *, (for example, addition, subtraction, multiplication, and division) is defined by: 

X*Y = {x*y: x∈X , y∈Y} (1) 

A particularly useful property of interval arithmetic operations is: 

x*y ∈  X*Y (2) 

which means that the sum, difference, product, and quotient of two real numbers belong to the 

same properties of the including intervals.  Rules for interval operations include: 

X + Y = [xl , xu]  +  [yl , yu]  =   [xl + yl   ,  xu + yu] (3) 

X – Y = [xl , xu]  -  [yl , yu]  =   [xl – yu    ,   xu – yl] (4) 

X Y = [xl , xu]  [yl , yu] = [min(xl yl,xu yu, xl yu ,xu yl), max(xl yl,xu yu, xl yu ,xu yl)] (5) 

X  / Y = [xl , xu] /[yl , yu]  = [xl ,xu ] [1/yu, 1/ yl]    if 0∉to [yl , yu] (6) 

Isotonicity is another useful property of interval operations.  It states that for intervals X, Y, W, 

and Z  

if X⊂ W and Y ⊂ Z then X*Y ⊂ W*Z (7) 



For each continuous function, f(x), where x is an n-dimensional vector and x∈X, one can use 

interval arithmetic to identify bounds on the range of the function.  Consider a function f(x) 

whose range over interval X is defined as  f(X), i.e.  f(X) = {f(x): x∈X}. 

An interval function F is called an inclusion function for f over interval X if 

 f(X) ⊆  F(X) (8) 

Inclusion functions are extremely important in interval analysis as they provide bounds on 

ranges without exhaustive enumeration.  There are two common methods for constructing 

inclusion functions: natural interval extensions and centered forms.  A natural interval extension 

is an expression where each x in the various terms of f(x) is replaced with it including interval, X, 

and the mathematical operators are replaced with interval operations.  Centered forms are 

inclusion functions that represent generalization of the algebraic centered forms for real variables.  

A particularly useful centered form is based on the natural interval extension of Taylor’s 

expansion of the function.  More details on interval analysis are given in [2-4]. 

Constraint logic propagation  

Constraint logic propagation known as CLP is a problem-solving paradigm that establishes a 

clear distinction between two pivotal aspects of a problem: a precise definition of the constraints 

that define the problem to be solved, and the algorithms and heuristics enabling selection of the 

decisions to solve the problem.  Because of these capabilities, constraint programming is 

increasingly being used as a problem-solving tool for many engineering problems [5,6]. 

Constraint programming was originally developed for solving feasibility problems but has 

recently been used in optimization problems [7]. Although constraint programming methods are 

efficient in solving feasibility/targeting problems, optimization depends entirely on building the 

correct constrained model. To show how constraint logic propagation with interval labels works, 

this paper gives numerical examples one is the “Waltz” algorithm, first introduced in the mid 

seventies [8].  

Suppose the following relations model/define our problem: 

x+y=z,    y ≤  x (9) 

and we can start with the following bounds: 

x ∈  [1,10],  y ∈  [3,8],  z ∈  [2,7], (10) 

This would be implemented in a data structure given by the following constraint network: 



 
The very famous old “Waltz” algorithm proceeds as follows: 

 The constraint queue begins with both constraints (CON1, CON2). 

 CON1 (x + y = z) is popped from the queue. 

 Since x ≥ 1 and y ≥3, CON1 gives z ≥ 4; therefore reset the bounds of z to [4,7]. 

 Since z ≤ 7 and y ≥3, CON1 gives x ≤ 4; therefore reset the bounds of x to [1,4]. 

 Since x and z have been changed, add CON2 to the queue. 

 CON2 (y ≤ x) is popped from the queue. 

 Since x ≤ y, CON2 gives y ≤ 4; therefore reset the bounds of y to [3,4]. 

 Since y ≥ 3, CON2 gives x ≥3; therefore reset the bounds of x to [3,4]. 

 Since x and y have changed, add CON1 to the queue. 

 CON1 (x + y = z) is popped from the queue. 

 Since x ≥ 3, y ≥ 3, CON1 gives z ≥ 6; therefore reset the bounds of z to [6,7]. 

 Since only z has changed and z has no other constraints beside CON1, nothing is added to 

the queue. 

 Since the queue is empty, the algorithm quits. 

This simple numerical example demonstrates how to use constraint logic propagation 

techniques in solving engineering problems that can be modeled using constraints and interval 

labels consisting of deterministic bounds [9]. 
 
 

Combined CP and MP method for energy systems synthesis:  

A system that includes equality constraints such as mass, heat balances and performance 

equations, inequalities constraints such as the ones including operating windows and design 

parameters and logical expressions constraints of superstructures and/or operating philosophies 

can easily be modeled in CS environment as below: 

 
X^2 + 6.0x=y-2^k; 

kx+7.7y=2.4; 

(k-1)^2<4; 

(ln(y+2x+12)< (k+5)) or (y>k^2)  (x<0.0) and (y<1); 

CON2:   y # x CON1: x+y=z   Constraints: 

   Nodes:                       z 0: [2,7]               y0: [3,8]                    x 0: [1,10] 

(11) 
 
 

(12) 



 

Where k is integer; x, y are real and  stands for implication 
 
The solution of the problem above exhibits several solutions that all lay in these intervals of the 
three variables.   
k = [0, 2]; 
x = [-6, -1e-10]; 
y = [0.311688, 1]; 
 
The exact solutions are as follows: 
k = 0; x = -5.88301; y = 0.311688; 
k = 0; x = -0.11701;  y = 0.311688;  
k = 1; x = -0.289055; y = 0.349227; 
k = 2; x = -0.658479; y = 0.482721; 
 
 
In real life industrial problems we can find many ways to limit the number of solutions or even 

push the problem further to having a unique solution via adding to the problem new constraints. 

Such constraints can be based upon the physico-chemical nature of the problem, using entropy 

balance for instance and through the insertion of decision maker’s constraints and preferences 

such as defined ranges for objective function, operating window of some equipment, desired 

features in process structure and units design and so on.  

In the above mentioned problem we can add one more constraint and the problem will be fully 

defined and has a unique solution [10]. 

 
X^2 + 6.0x=y-2^k; 

kx+7.7y=2.4; 

(k-1)^2<4; 

(ln(y+2x+12)< (k+5)) or (y>k^2)  (x<0.0) and (y<1); 

(x<2.5y) (ky<=3) and (k>y+1); 
 
This unique solution then is; k= 2, x= -0.658 and y= 0.4827 
 
The essence of our method of integrating CS and MP in solving large optimization problems is to 

convert the large industrial combinatorial problem into multi-level optimization problem. We 

then solve using CP first at the lowest level of “followers” to define certain range of this level 

objective function and variables. We move from the lowest follower level up to a higher level and 

repeat this step of solving using CP till we reach to the upper/leader level. Again we use CP for 

the leader problem to tighten the range of both the variables and leader’s objective function. 



MP is then used to find the details of the whole problem solution after inserting bounded 

variables, objectives ranges of the followers.   

The simultaneous HEN synthesis and process operations optimization problem can be represented 

as three levels optimization problems; minimize area cost subject to minimum number of units 

subject to minimum utility cost, or in two levels (BLPP) minimize capital cost subject to 

minimum energy cost.  

 

Illustrating Examples:  

In this section we introduce two examples, CP formulation for HEN synthesis energy targeting 

application and a numerical example in which we use CP solution of a HEN minimum capital 

cost synthesis as a preparatory step for the NLP application for finding the solutions details of the 

HEN synthesis. 

The first example that shows how to formulate the CP model for solving energy targeting sub-

problem under all possible combinations of process modifications, is detailed below. 

 

Model Description and CP Formulation: (Example 1) 

Hot streams temperatures shifted down one-by-one by the first set of desired minimum 

temperature differences, ∆Tmin
i, between the hot and cold resource streams to form a set of 

possible discrete temperature values for a continuum of possible values for ∆Tmin
i.  ∆Tmin

i 

represents the ∆Tmin
 of hot stream (i) which refers to the minimum temperature approach between 

a specific hot stream and all other cold streams, can be taken here in this paper as equal to 1 F. 

The shifted supply and target (output) temperatures of resource hot streams, and the actual supply 

and the target cold streams temperatures obtained through this are then sorted in a descending 

order, with duplicates removed, with each successive temperature pair representing the 

boundaries of a temperature step and defining a new temperature step “S”.  Each supply 

temperature and target temperature input is in the form of intervals (e.g., a pair of range 

boundaries) and not single discrete numbers. Each supply temperature and target temperature 

input interval is then divided on an equal basis according to the desired temperature precision.  

The completion of this step results in “N” number of process temperature steps. While not 

discussed in details here creating the new heat carrier streams in the hot side or in the cold side 

can be done with the same concept used above of temperature range division. The heat carrier 

stream or pump around streams exist and no exist decisions can also be modeled with supply 



temperature defined by the user on a range and its target temperature and FCp too as variables 

defined in ranges. The target temperature range will be divided to equal temperature intervals 

again degree-by-degree or according to the required accuracy in temperature.  

The total number of temperature steps is “N+1,” where S varies from 0,1,2,…,N and the 

temperature step number ”0” represents the external energy utility temperature step.  In this step, 

known as the external energy step, energy output, initial values: Qs=0
low_output = 0.0 in “energy 

units” and Q s=0
high_output = 0.0 in “energy units.” 

Each temperature step, ”S” greater than 0, where S =1,2,…,N, has energy surplus Qs
surplus.  Such 

energy surplus has two calculated values: Qs
low_surplus and Qs

high_surplus.  It also has energy output 

Qs
output from one temperature step to another.  Such energy output Qs

output has also two calculated 

values: Qs
low_output and Qs

high_output.  These values for energy surplus Qs
surplus and energy output 

Qs
output are calculated for S=1,2,…,N: 

Qs
low_surplus = )()(

1 1
ss

n

k

m

j

high
j

low
k TcThFCpFCp

S S

−−∑ ∑
= =

 

Qs
high_surplus = )()(

1 1
ss

n

k

m

j

low
j

high
k TcThFCpFCp

S S

−−∑ ∑
= =

 

Qs
low_output = Surpluslow

s
outputlow

s QQ __
1 +−  

Qs
high_output = Surplushigh

s
outputhigh

s QQ __
1 +−  

 

Where ns and ms are the number of the resource hot and cold streams respectively represented in 

the sth temperature step and Ths and Tcs are the higher and lower shifted temperatures for the hot 

streams, respectively, and actual temperature of the cold streams representing the temperature 

boundaries. Logic propositions such as “or, and, ” are used to enable modeling logics. 

][ kFCp  and ][ jFCp are heat capacity flowrate intervals; defined as follows: 

FCplow
k : is the low value of the Heat Capacity Flowrate term resulted from the multiplication of 

the value of the flow F lower bound  by the specific heat value Cp of the hot stream number k in 

flow-specific heat units. 



FCphigh
k : is the high value of the Heat Capacity Flowrate term resulted from the multiplication of 

the value of the flow F upper bound  by the specific heat value Cp of the hot stream number k in 

flow-specific heat units. 

FCplow
j : is the low value of the Heat Capacity Flowrate term resulted from the multiplication of 

the value of the flow F lower bound by the specific heat value Cp of the cold stream number j in 

flow-specific heat units. 

FCphigh
j : is the high value of the Heat Capacity Flowrate term resulted from the multiplication of 

the value of the flow F upper bound by the specific heat value Cp of the cold stream number j in 

flow-specific heat units 

][ k
Hsk

FCp∑
∈

- ][ j
Csj

FCp∑
∈

 + [ sQh ] – [ sQc ] + ][][ output
s

surplus
s QQ + = 0.0;   S =1,2,…,N; 

 [ sQh ] ≥ 0.0; [ sQc ]≥ 0.0; ][ output
sQ ≥ 0.0; ;0.0][;0.0][ 00 == outputsurplus QQ  

Upon the calculation of utilities minima using the above formulation the selection of the heating 

and cooling utilities exact consumption can be decided by the decision maker from the resulted 

ranges. An interval collapsing algorithm using MP or other methods can now be used to select the 

operating conditions that render the desired level of energy consumption [11, 12]. 

The second example of integrating CLP and MP methods is a heat exchanger synthesis problem, 

to find the minimum area/cost network for desired energy consumption and defined stream 

matches. Table 1.0 Data for the CP Illustration Model  

stream Tin(K) Tout(K) FCp(kW/K) 
H1 440 350 22 
C1 349 430 20 
C2 320 368 7.5 

 
 

Exchanger minimum approach temperature is 10 K, the problem needs no heating and cooling 

utilities, the cost of heat exchanger is function in its area (cost = 1300*A^0.6 $/yr) and the 

network streams superstructure is shown below.( Fludas et al., 1996) 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

NLP can be used alone to solve this problem (Fludas et al., 1996). However combining the power 

of both CP and MP methods can make the solution even easier since the application of the CP 

first can confirm feasibility of desired objective function, reduce noticeably the search space since 

it rigorously define lower and upper bounds of each variable and/or parameters and enable the 

deletion of parts of the superstructure that are not feasible and/or undesired by the decision 

maker.   

Note: Chen approximation for the log mean temperature difference is used. 

CP Model Formulation: 
 
1300*A1^0.6+ 1300*A2^0.6)-OF=0.0; 
A1-(1620/DTA) = 0.0; 
A2-(360/(0.5*DTB))=0.0; 
ta-(T3- 430)=0.0; 
tb-(T56-349)=0.0; 
tab-(ta+tb)=0.0; 
tc-(T4-368)=0.0; 
td-(T78-320)=0.0; 
tcd-(tc+td)=0.0; 
((0.5*ta*tb*tab)^0.3334)-DTA=0.0; 
((0.5*tc*td*tcd )^0.3334)-DTB=0.0; 
F1+F2-22=0.0; 
F3-F5-F6=0.0; 
F4-F7-F8=0.0; 
F3-F1-F8=0.0; 
F4-F2-F6=0.0; 
F1*440-F8*T78-F3*T3=0.0; 
F2*440-F6*T56-F4*T4=0.0; 
(F3*(T3-T56))-1620=0.0; 
(F4*(T4-T78))-360=0.0; 
T3-430>=0.1; 
T56-349>=0.1; 

H1

H1-C1

H1-C2

22
440

F1

F2

F3
T3

F4
T4

T56 F5
F6

F7

F8

T78

350

H1-C1

H1-C2

C1

C2

20
349

7.5
320

430

368



T4-368>=0.1; 
T78-320>=0.1; 
T3<=440; 
T56<=440; 
T4<=440; 
T78<=440; 
F1; F2; F3; F4; F5; F6; F7; F8>=0.0; 
 
CP Interval Model Solution: 
 
A1 = [171.678, 3764.16]; A2 = [11.9785, 244.221]; F1 = [17.4659, 19.3347];  
F2 = [2.66527, 4.53409]; F3 = [17.8218, 19.7287]; F4 = [3.0025, 5.10778]; 
F5  = [15.4664, 19.7287]; F6  = [0, 2.35543]; F7  = [0.739738, 5.10778]; F8  = [0, 2.26277]; 
T3 = [431.214, 440]; T4 = [390.581, 440]; T56 = [349.1, 357.886]; T78 = [320.1, 369.519]; 
OF = [34262.7, 216901]; 
 
The objective function OF = [34262.7:216901] $/yr lower and upper bounds can be tightened 

more and more using repeated bisectional method followed by feasibility checks. OF can then be 

inserted as a new constraint in the model. The decision maker for instance; can define desired 

range for his/her budget (OF), if he/she gets feasible solution it means his/her desired objective is 

achievable and he/she can continue then using NLP to find the details of the solution. 

 

Now let us assume that the decision maker has a budget of OF = [40000:45000] $/yr.  

Inserting new budget interval value in the CP model constraints list renders the following 

tightened bounds for system variables. 

A1 = [180.476, 287.627]; A2 = [13.3803, 63.1493]; F1 = [17.9487, 19.2544];  

F2 = [2.7456, 4.05127]; F3 = [18.1984, 19.5222]; F4 = [3.00929, 4.44035];  

F5 = [16.5616, 19.5222]; F6 = [0, 1.63681]; F7  = [1.43581, 4.44035]; F8  = [0, 1.57349]; 

T3 = [433.964, 440]; T4 = [401.445, 440]; T56 = [350.981, 357.018]; T78 = [320.371, 358.925];  

It is clear from the new bounds that the decision maker objective is achievable, HEN 

superstructure is reducible, F8 superstructure branch is close to zero and can be removed from the 

H1 stream superstructure, and the flow & temperature ranges have been reduced drastically, 

compared with normal monotonoicity checks. Such insights make the NLP formulation and 

solution easier especially for large industrial problems. 

 

 

 

 

 



Conclusion: 

Combining CP and mathematical programming in a stand-alone fashion on the modeling 

level creates more powerful environment for solving optimization problems. Logical constraints 

that are very common in process synthesis and operation problems are easily formulated in CP 

environment. Formulating and solving energy systems synthesis problems in CP environment 

results in insights and tight bounds on the problem variables and objective function before 

applying MP. CP as a preparation step to large optimization problem solution makes the step of 

obtaining the detailed solution of the problem using mathematical programming easier.  
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