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Abstract 
 
The analysis and design of many environmental and separation processes rely on the 
availability of accurate adsorption isotherms. These isotherms are estimated from 
measurements of the adsorption process variables. Unfortunately, these variables are 
usually contaminated with errors that affect the accuracy of their estimated parameters. 
Therefore, one objective of this work was to study the effect of measurement noise in the 
variables on the estimation accuracy of the Langmuir isotherm. In fact, Langmuir has 
three linearized forms, so it was sought to determine which out of these three forms 
would provide the most accurate estimated parameters. Another objective of this work 
was to estimate the isotherm parameters using the nonlinear Langmuir form using 
nonlinear optimization, and to compare the accuracy of the estimated parameters to the 
ones obtained using the most accurate linearized form. A third objective was to study the 
effect of measurement noise level on the accuracy of the Langmuir isotherm. As a result 
of this study, the following was found. One of the three linearized Langmuir forms 
provided the most accurate estimates. In fact, its accuracy was even comparable to that 
obtained by nonlinear optimization using the nonlinear isotherm. In addition, the 
estimation accuracy was more sensitive to the magnitude of the affinity constant than to 
the maximum amount of adsorbate in adsorbent; larger values of affinity constant result 
in higher estimation accuracy of both model parameters. Finally, it was confirmed that 
the higher the noise content in the variables, the larger the uncertainty of their estimation. 
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1. Introduction 
 
In the past few decades, a great deal of attention has been given to water pollution 
problems. For example, the removal of toxic heavy metals, such as Zinc, Nickel, and 
Lead from groundwater and wastewater has been approached by various studies, taking 
into consideration the serious implications that these pollutants can have on the health of 
humans and other living organisms. Consequently, many water purification methods have 
been developed and used to remediate consumable and waste water from those pollutants. 
These methods include chemical precipitation (Hence, 1998), reverse osmosis (Ning, 
2002), electro dialysis, ion exchange, and finally adsorption, which is the focus of this 
proposal. 
 
Adsorption is a mass transfer process, which involves the contact of solid called 
adsorbent with a fluid containing certain pollutants called adsorbate (Alkan and Dogan, 
2001). These pollutants can be organic compounds, pathogens, and heavy metals, and 
their contact with the surface of the adsorbent results in permanent bonds, ensuring their 
removal from the fluid. The adsorption capacity depends on several factors, such as the 
adsorbent type, its surface area, and its internal porous structure. Additionally, since the 
attachment of the pollutant can be physical or chemical, the physical and chemical 
structures as well as the electrical charge of the adsorbent can significantly influence its 
interactions with the adsorbates, and thus the effectiveness of pollutant removal. 
 
Adsorption processes are characterized by their kinetic and equilibrium isotherms. The 
adsorption isotherms specify the equilibrium surface concentration of the adsorbate as a 
function of its bulk concentration. Several mathematical models have been proposed to 
describe the equilibrium isotherms of adsorption. Some of the most popular models 
include Langmuir, Freundlich, Redlich-Peterson, and Sips. A summary of these isotherms 
is provided by Dabaybeh (2001). Even though most of these adsorption isotherms were 
derived based on some theoretical assumptions about the adsorption mechanism, they 
involve model parameters that need to be estimated from experimental measurements of 
the process variables. As an example, the Langmuir isotherm has the following form, 
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where,  is the equilibrium liquid phase concentration (mg/l),  is the equilibrium 
solid phase concentration (mg/g),  is the maximum amount of adsorbate per unit 
weight of the adsorbent to form a complete monolayer, and b is a constant related to the 
affinity between the adsorbent and adsorbate. In the above Langmuir model, and  
are model parameters to be estimated using measurements of the initial and equilibrium 
concentrations.  
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Unfortunately, measurements of the adsorption process variables are usually 
contaminated with noise or measurement errors due to random errors, human errors, or 
malfunctioning sensors. The presence of such measurement noise, especially in large 
amounts, can largely degrade the accuracy of the estimated isotherm parameters, which in 
turn limits the ability of the isotherm to accurately predict the process adsorption 
capacity. This is because most modeling techniques estimate the model parameters by 



minimizing some objective functions related to the prediction errors of the model output 
( ). Unfortunately, since the isotherm input and output variables are affected by 
measurement errors, only minimizing the output prediction errors may not lead to 
acceptable estimation.  

eq

 
Therefore, the objectives of this project are as follows: 
 

i. Perform a sensitivity analysis to investigate the effect of measurement noise on 
the estimation accuracy of the Langmuir isotherms for all its linearized forms. 
 

ii. Recommend the best linearized form for Langmuir parameter estimation. 
 

iii. Assess the effect of measurement noise on the parameters estimated from the 
nonlinear Langmuir model and compare that to the effect on the parameters 
estimated using the most accurate linearized model. 

 
iv. Assess the effects of different levels of noise on the accuracy of estimated 

isotherm parameters. 
 
The rest of this paper is organized as follows. In Section 2, a summary of some related 
recent work is presented, followed by a description of isotherm estimation in Section 3. 
Then, the effects of measurement noise on the estimation accuracy of the Langmuir 
linearized forms and the nonlinear form are presented in Section 4, and the results of a 
sensitivity analysis for the estimation accuracy of model parameters are summarized in 
section 5. In section 6, the effect of noise content on the estimation accuracy of estimated 
isotherms is demonstrated for all Langmuir forms. Finally, some concluding remarks are 
presented in Section 7.  
 

 
2. Literature Review 

 
Several researchers have addressed the problem of assessing the accuracy of adsorption 
isotherms. For example, the concept of comparing adsorption isotherms and parameters 
and evaluating their accuracy by using different models has been discussed by Otun et. al. 
(2006) for the removal of selected metal ions by powdered egg shell, by Pikaar et. al. 
(2006) for the sorption of organic compounds to activated carbons, by Ridhika et. al. 
(2006) for the adsorptive removal of chlorophenols from aqueous solution by low cost 
adsorbent, and by Karahan et. al (2006) for the removal of boron from aqueous solution 
by clays and modified clays, and many others. However, these studies focused on 
determining the best fitting model only for the material, substance or process under study. 
 
Other studies focused on determining the most suitable model to explain the adsorption 
process depending on the type of instruments used to get the experimental data. For 
example, Gormi et. Al. (2006) studied the estimation of adsorption-desorption models in 
the presence of noise in the gas sensors using Langmuir and Wolkenstein. Other studies 
focused on assessing the effect of some variables on the accuracy of the adsorption 
parameters. For example, the choice of column hold-up volume, range and density of the 
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data point was found to have an impact on systematic errors in the measurement of 
adsorption isotherms by frontal analysis (Gritti et. al., 2005). This study showed that the 
concentration range within which the adsorption data are measured and the way the data 
points are distributed are important factors in error estimation. In another study of Gritti 
et. al. (2004), they showed that the fluctuations of the column temperature and the 
composition and the flow rate of the mobile phase affect the accuracy and precision of 
the adsorption isotherm parameters measured by dynamic HPLC methods.  

Other studies performed statistical analysis on adsorption isotherms to determine the 
most accurate isotherm, i.e., isotherm model selection. For example, Joshi et. al. (2006) 
performed model based statistical analysis of adsorption equilibrium data. After 
comparing the parameter estimation by different linearized and non-linear adsorption 
models, it was shown that the Langmuir isotherm does not give a satisfying description of 
the considered experimental data, and that Freundlich isotherm provides the most 
accurate estimation for the liquid phase concentration range used in the experiment. 
However, the effect of noise on the accuracy of adsorption parameter estimation has been 
ignored.  

It can be seen that the above studies dealt with analysis or assessment of adsorption 
isotherms with respect to model selection, effect of certain variables or instruments. In 
this work, however, the objective is to sturdy the effect of measurement noise on the 
estimation accuracy of adsorption isotherms. In particular, the focus will be on the 
Langmuir isotherm to investigate the best method of estimation using a linearized form 
and the nonlinear form itself.  

 
3. Estimation of Adsorption Isotherms 

 
3.1 Isotherm Model Formulation 
 
Adsorption isotherms are usually nonlinear models relating the adsorption uptake ( ) to 
the equilibrium concentration ( ), which can be expressed as follows: 

eq

eC
  ( ),e eq f C θ=      (2) 

where, θ  is a vector of the isotherm parameters to be estimated empirically from 
experimental measurements. Sometimes, these nonlinear isotherms can be linearized by 
mathematical manipulations, and can be expressed in a linear form as follows: 

 ( ) ( ) ( ) ( )1 1 1, ,e e e eg q C a g q C a2θ θ= × +    (3) 
where,  and  are some functions of the uptake and equilibrium concentration, and  
and  are the linearized isotherm parameters, which are functions of the model 
parameter vector, 

1g 2g 1a

2a
θ .  

 
Given measurements of the initial concentration and equilibrium concentration data, 

( ) ( ) ( ){ }1 2 . .o o oC C C n  and ( ) ( ) ( ){ }1 2 . .e e eC C C n , which are assumed to 

be contaminated with additive zero-mean Gaussian noise, i.e., ooo CC ε+=
~  and 
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e eC C eε= +  where ( )2,0~ σε No  and eε ( )2~ 0,N σ , it is desired to estimate the 
isotherm parameter vector, θ , that satisfies the relationship: 

( ) ( )( ),e eq k f C k θ= , [ ]1,k∈ n .    (4) 
Note that the equilibrium uptake is not measured and in calculated using the initial and 
equilibrium concentration data follows: 
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where, V  is the volume of the solution and  is the mass of the adsorbent.  w
 
The linearized form of equation (4) can be written similar to equation (3) as follows, 

( ) ( )( ) ( ) ( ) ( )( ) ( )1 1 1 2, ,e e e eg q k C k a g q k C k a [ ]1,n∈k .  (6) θ θ= × + , 

Defining: ( ) ( ) ( )( )1 1 ,e eg k g q k C k≡ , ( ) ( ) ( )( )2 2 ,e eg k g q k C k≡ , ( )1 1a a θ≡ , and 

( )2 2a a θ≡ , equation (6) simplifies to, 

( ) ( )1 1 1g k a g k a= × + 2      (7) 
which can be expressed in matrix form as, 
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, equation (8) reduces to, 

 
Y Xa= .        (9) 

 
3.2 Least Squares Isotherm Estimation 

 
The model parameter vector, θ , can be computed using the estimated linearized isotherm 
parameters,   and . The linearized model parameters can be estimated using least 
squares regression by solving the following minimization problem, 

1a 2a

     (10) { } ( ) ( )ˆ arg min T
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a Y Xa Y= − − Xa

The above minimization problem has the following closed form solution, 
  ( ) 1

ˆ Ta X X X Y
−

= T      (11) 



Once the parameters  and are estimated, the isotherm parameter vector 1a 2a θ  can be 
computed using the relations, ( )1 1a a θ≡  and ( )2 2a a θ≡ . 
 
3.3 Estimation of Langmuir Isotherm Parameters 

 
Consider the Langmuir isotherm shown in equation (1), where the parameters, and , 
are to be estimated using measurements of . Note that in this case, 

cQ b
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The Langmuir isotherm can be linearized three different ways as shown below: 
 

1 1 1

e c eq Q b C Q
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

1

c

     (Langmuir 1)    (12) 

1e
e

e c

C C
q Q Q

⎛ ⎞
= +⎜ ⎟
⎝ ⎠

1

c b
             (Langmuir 2)                                 (13) 

e
e c

e

q b q Q b
C

= − +                       (Langmuir 3)                                       (14) 

As an example, for the second linearized form (Langmuir 2), 1
e
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= . Therefore, once estimates of the linearized isotherm,  

and , are obtained using equation (11), estimates of the parameters and  can be 
computed as follows, 
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It can be seen from equation (10), that the least squares estimation method relies on 
minimizing the prediction error of the model output, Y , when estimating the isotherm 
parameters. This is because it assumes that the input matrix, X , is noise-free. However, 
there is measurement noise in all variables, and therefore, the matrix, X  is also noisy, 
which violates the basic assumption of this approach. Therefore, the presence of 
measurement noise in the data can greatly affect the estimation accuracy of estimated 
isotherms.  
 
 
4. Effect of Noise on the Estimation Accuracy of the Langmuir Models 
 
4.1 Effect of Noise on the Estimation Accuracy of the Linearized Langmuir Models 
 
Since there are three different linearized forms for the Langmuir isotherms, it is expected 
to get three different estimates of the isotherm parameters. This is because the three 
forms minimize different objectives functions in the estimation of the isotherm 
parameters. Therefore, in this section, the objective is to study the effect of measurement 



noise on the estimation accuracy of the three linearized Langmuir forms, which will lead 
to the selection of the best form for estimating the isotherm parameters.   
 
To perform this study, the Langmuir isotherm is used to generate data assuming  =150, 
and =0.15. These data are assumed to be noise-free. Then, the initial and equilibrium 
concentration data are contaminated with zero mean Gaussian noise of variance 0.5. 
Then, the noisy data are used to estimate the isotherm parameters using the three 
linearized forms as described in Section 3. To provide a statically meaningful results, a 
Monte Carlo simulation of 1000 realizations is performed, and the distributions of the 
estimated parameters are constructed for the three linearized forms as shown in Figures 1 
and 2 for the parameters,  and , respectively. 
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Figure 1. Comparison of the accuracy of estimated Qc using  
the three linearized Langmuir forms 
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Figure 2. Comparison of the accuracy of estimated b using  
the three linearized Langmuir forms 

 



Both Figures 1 and 2 show that the second linearized form of Langmuir provides the best 
estimated of the model parameters. This is also demonstrated by the standard deviations 
of the estimated parameters by the three forms as shown in Table 1.  
 
 

Table 1. Standard deviations of the estimated parameters for the three linearized 
Langmuir forms 
 

 Qc b 
Langmuir 1 2.698 0.0203 
Langmuir 2 0.611 0.0064 
Langmuir 3 2.087 0.0168 

 
Therefore, the second linearized form of Langmuir, shown in equation 13, provides the 
most accurate estimates for the adsorption parameters. 
 
 
4.2 Effect of Noise on the Estimation Accuracy of the Nonlinear Langmuir Model 
 
In this section, the estimation accuracy of the best linearized form of the Langmuir 
isotherm (Langmuir 2) is compared to that based on the nonlinear model itself. The 
parameter estimates based on the nonlinear model are obtained using nonlinear 
optimization as follows: 

i. A mesh of the possible Qc- b values is created as shown in Figure 3. 
ii. At each node (i.e., {Qc,b} pair), the values of the equilibrium uptake, , is 

computed given the values of the equilibrium concentrations, .   
eq

eC
iii. The mean squares errors between the predicted  and the measured values are 

computed at each node. 
eq

iv. The isotherm parameter pair {Qc,b} that provides the minimum mean squares 
error is selected as the optimum isotherm parameters. 
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Figure 3. The mesh used to estimate the optimum {Qc,b} pair  
based on the nonlinear Langmuir isotherm 



To compare the accuracy of estimated isotherm parameters using Langmuir-2 and the 
nonlinear model, a Monte Carlo simulation is performed similar to the one described in 
Section 4.1, but for both the linearized and nonlinear forms and for different values of Qc 
and b, and the results are illustrated in Figures 4 and 5. Figures 4 and 5 show that the 
accuracies obtained using the second linearized isotherm form (Langmuir-2) and the 
nonlinear model, are comparable and differ for different magnitudes of Qc and b. For 
example, for small values of b, the nonlinear model provided slightly better estimates of 
the parameters, but for larger values of b, the linearized model provided better results. 
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     Figure 4. Qc estimation by Langmuir n                      Figure 5. b estimation by Langmuir n 
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5. Sensitivity Analysis for the Estimation Accuracy of Model Parameters Qc and b 
 

5.1 Estimation of Qc and b in Linearized Langmuir Models 
 
The variation of Qc true value, at fixed b values, shows no significant effect on the 
distribution of Qc experimental data obtained from the three linearized models. On the 
other hand, increasing the true value of b, at Qc fixed values, shows that the standard 
deviation of data distribution for the three models decreases and the three models gives 
better and closer estimation. Also, the data fit according to Langmuir 3 and Langmuir 1 
becomes increasingly more similar. In fact, the effect of b variation is most significant on 
Langmuir 1 estimation whose standard deviation changes significantly with the change in 
b value. Finally, increasing the true values of both parameters Qc and b, simultaneously, 
shows that the effect of the variation of b dominate the way the models’ estimation for 
parameters changes; i.e. the results are very similar to those obtained in the case of b 
variation. A summary of the aforementioned results is demonstrated in Appendix A. 
 
Equally true, the results of varying the parameters’ magnitude on b estimation by the 
three linearized Langmuir models are the same as those on Qc estimation. A summary of 
those results is illustrated in Appendix B. 
 
5.2 Estimation of Qc and b in Nonlinear Langmuir Model 
 
Similar to the results of the linearized forms, the variation of Qc true value, at fixed b 
values, shows no significant effect is noticed on the distribution of Qc experimental data 
obtained from the two models. On the other hand, under very small b values, the 
nonlinear model Langmuir n gives better estimation for Qc parameter than the linear 
model Langmuir 2. As b increases, however, Langmuir 2 estimation improves and 
becomes more accurate than that of Langmuir n. Also, as b true value increases, it is 
noticed that the standard deviation of data distribution for the two models decreases and 
thus both models give better and closer estimation. Finally, increasing the true values of 
both parameters Qc and b, simultaneously, shows that the effect of the variation of b 
dominate the way the models’ estimation for parameters changes; i.e. the results are very 
similar to those obtained in the case of b variation. A summary of the aforementioned 
results is demonstrated in Appendix C. 
 
Again, the results of varying the parameters’ magnitude on b estimation by the nonlinear 
Langmuir model are the same as those on Qc estimation. A summary of those results is 
illustrated in Appendix D. 
 
6. Effect of Noise Content on the Estimation Accuracy of Estimated Isotherms 
 
In this study, the effect of noise content in the measured variables on the estimation 
accuracy of the Langmuir isotherm parameters is investigated. To do that, the sensitivity 
analysis performed in Sections 4.1 and 4.2 are repeated for different noise levels 
(variances of 0.1, 0.5, and 0.9), and the results are illustrated in Figures 6 and 7. In these 
Figures, the line colors denote the following: red: Langmuir-1, blue: Langmur-2, green: 
Langmuir-3, grey: nonlinear model. As expected, these Figures show that for larger noise 
contents (higher noise variance), the uncertainty of the estimated parameters increases.  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

       Figure 6: The effect of noise variation on               Figure 7: The effect of noise variation on 
                              the estimation of Qc                      the estimation of b                                     

 
 
7. Conclusions 
 
In this project, a statistical analysis of the Langmuir isotherm was preformed. It was 
found that out of three linearized isotherms forms of Langmuir, (Langmuir-2) provides 
the most accurate estimates of the isotherm parameters. In fact, Langmuir-2 provides 
comparable estimated to the ones obtained using the nonlinear isotherm form. This is an 
important finding because it is more computationally expensive to estimate the isotherm 
parameters by nonlinear optimization. It is also confirmed that the level of noise in the 
adsorption data degrades the estimation accuracy of estimated isotherm parameters. 
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Appendix A 

The variation of Qc estimation by the linearized Langmuir models as function of Qc and b true values 
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Appendix B 

The variation of b estimation by the linearized Langmuir models as function of Qc and b true values 
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Appendix C 

The variation of Qc estimation by Langmuir 2 and Langmuir n as function of Qc and b true values 
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Appendix D 

The variation of b estimation by Langmuir 2 and Langmuir n as function of Qc and b true values 




