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Polylactide (PLA)

• Polylactide (PLA) is an 
aliphatic polyester polymer 
derived from lactic acid. 
Controlled stereochemistry of 
lactides allows flexibility to 
control physical and 
mechanical properties.  

• Applications of PLA:
• Textile fibers
• Rigid thermoforms
• Food and beverage containers
• Biocompatible medical devices

Corn, a Renewable Resource, 
Milled to Yield Starch.
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A Critical Property Limiting PLA Applications 
is Moisture Permeation

• Why is Moisture Sorption/Transport in 
PLA Important?

Commercial PLA water bottle buckles due to water 
loss after storage in warehouse for several months!

Schematic of Moisture 
Transport Through 
Bottle Wall
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Mechanics of Moisture Transport in PLA

Hydrophilic
Alcohol End-
Group Hydrophobic

Chain of Ester 
Linkages

Hydrophilic
Acid End-
Group

Hydrolysis 
degrades PLA

High MW PLA is Moderately 
Hydrophobic (absorbs 
0.5-1% water)

Hypothesis:

Hydrophilic end groups
critical for moisture 
sorption and transport:

• end groups excluded 
from crystalline regions 
of PLA

• # end groups increases 
with degradation
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Hypothesis:  Hydrophilic end 
groups critical for moisture 
sorption and transport

• Observations Consistent with Hypothesis
– Sorption insensitive to crystallinity
– Sorption increases with degradation

• Observations Inconsistent with Hypothesis
– Low MW PEP-PLA block co-polymer absorbs only 

30% less moisture
– Sorption in Low MW PLA insensitive to end group 

composition (similar sorption to high MW PLA)
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Degradation in PLA

Hydrophilic
Alcohol End-
Group Hydrophobic

Chain of Ester 
Linkages

Hydrophilic
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Degradation of PLA

• Why is Degradation important?
• Controlled Degradability of PLA Products

– Minimize degradation during use
– Maximize degradation during waste 

management (composting)
• Degradation is coupled to moisture 

sorption/transport



Experimental Methods for 
Monitoring Degradation of PLA

• Controlled Temp & RH
• Analysis

– Weighing
– Acid/Base Titration
– HPLC & GPC
– NMR (with D2O)
– Sorption Experiments
– Thermal Mechanical Properties



Degradation of PLA Exposed to 
Humid Air

• Degradation of PLA in Controlled 
Environment

• Desiccator placed in oven at given 
temperature

• Water activity maintained via saturated 
salt solution in desiccator base

• Conditions studied: 
85% RH and 30o C, 65o C and 80o C



Moisture Gain of PLA @ 85% Relative Humidity 
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Comparison of Changes in Crystallinity at 85%RH
Two Temperature Regimes
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Degradation of PLA
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Figure 10: Degradation of PLA exposed to 85% relative humidity.  Changes 
in molecular weight measured by GPC. 



Effect of Degradation on Sorption

0

1

2

3

4

5

6

0 10 20 30 40 50 60 70 80 90

Relative Humidity (%)

M
oi

st
ur

e 
So

rp
tio

n 
 (g

 w
at

er
 / 

g 
PL

A
, %

)

Raw Sample

3 Day 
Degradation

2 Day 
Degradation

1 Day 

Change in Sorption Isotherms for 4060 PLA 
after Degrading at 80 C & 85% RH

Sorption Isotherms measured by 
DVS at 40 C

Effect of Degradation on Sorption in PLA 4060
Phase 1 C: samples degraded at 60C 85% RH

0.0

0.5

1.0

1.5

2.0

2.5

0.0       10.0       20.0       30.0       40.0       50.0       60.0       70.0       80.0       90.0       

Relative Humidity (%)

M
as

s 
of

 W
at

er
 (%

)

Sorp 1 day
Desorp 1 day
Sorp 3 day
Desorp 3 day
Sorp 7 day
Desorp 7 day
Sorp 14 day
Desorp 14 day

1 Day Degradation

14 Day Degradation

7 Day

3 Day 

Degradation at 80ºCDegradation at 60ºC

Degradation Causes Rapid Rise in Sorption 

– After Induction Period



Degradation of PLA Immersed in 
Water

• Two time series of degradation experiments –
varying degrees of degradation

deionized and deuterated water
• Analysis of the hydrolyzate containing the 

degraded products
– Weighing
– Acid/Base Titration
– HPLC & GPC
– NMR (with D2O)



Degradation of PLA – Monitored by Mass 
Changes & Acid-Base Titration
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Change in PLA Molecular Weight 
(Mn) from GPC
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3 Functional Groups:

• Monomer = Lactic Acid (90 g/mol)

• End Group (81 g/mol)

• Chain Group (72 g/mol)

Degradation Reactions in PLA
Hydrolysis 
degrades PLA
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Random Scission Reaction:

End Scission Reaction:

Molecular Weight:

Functional Group Kinetics for PLA 
Degradation

3 Functional Groups:

• Monomer = Lactic Acid (90 g/mol)

• End Group (81 g/mol)

• Chain Group (72 g/mol)
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Analysis of Extent of Random and End 
Scission Reactions
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• Random scission increases 
slightly the first two days -
~1% random scission 
sufficient to more than half 
the Mn

• Falling MW without 
Soluble Products (lactic 
acid)

• No change in polymer 
pellets mass until 2 
days

• End Scission Dominates 
after the first 2 days

• Falling pH after 2 days 
Rapid End Scission



Conclusions
• A Critical Property Limiting PLA Applications is Moisture 

Permeation
• Degradation is Coupled to Moisture Sorption/Transport
• PLA is Moderately Hydrophobic
• Hydrolytic Degradation creates additional hydrolytic sites 

causing rapid rise in sorption – After Induction Period
• Functional Group Kinetics of PLA degradation indicate 

that end group scission dominates after the first 2 days 
creating an autocatalytic effect

• Random scission, albeit small (~1%), very active in the 
first two days causing more than 50% decrease in Mn


