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The rheological characterization and the determination of the parameters describing the 

shear viscosity and wall slip behavior of energetic materials is a challenge. Some of the 

conventional rheometers including various rotational rheometers are not capable of 

deforming typical energetic formulations with their gel binders and high degrees of 

particulate fill. Other available rheometers are not conducive to rheological 

characterization of energetic formulations in the vicinity of the manufacturing operation 

with the data to be used immediately for quality control. Squeeze flow provides 

significant advantages in safety of materials handling and exposure as well as providing 

easy data generation for routine quality control of energetic formulations being 

processed. Here the basic hardware is reviewed along with the methods for the analysis 

of raw data to determine the parameters of the shear viscosity and the wall slip of 

energetic formulations. It is suggested that appropriate analytical and numerical analyses 

can indeed provide the basic wherewithal necessary for the solution of the inverse 

problem of squeeze flows to characterize the shear viscosity and the wall slip parameters 

provided that the issues of uniqueness and stability are properly addressed. 

 
*  The full manuscript of this short paper/extended abstract will be published  

in Journal of Energetic Materials.  
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I. Introduction  

 

Energetic formulations are complex fluids, which present significant challenges for their 

rheological characterization [1-6]. This challenge stems from their viscoplasticity and 

concomitant wall slip behavior. Specialized techniques and multiple viscometers are 

employed to simultaneously characterize the parameters of the shear viscosity material 

function and wall slip versus the shear stress relationship [1-3]. Generally, the procedure 

for the characterization of the shear viscosity and wall slip involves systematic changes in 

the surface to volume ratio of the sample followed by the analysis of the flow curves [1-

5]. When capillary flow is employed to generate flow rate versus pressure drop data, the 

procedure for wall slip corrected shear viscosity determination requires the use of 

multiple capillary dies involving systematically varied capillary lengths at constant 

diameter and different capillary diameters at constant length over the diameter ratio (for 

example, 12 capillaries were used in the study of the behavior of concentrated 

suspensions by Yilmazer and Kalyon [1]). In steady torsional flow between two parallel 

disks the procedure requires the systematic change of the gap of the rheometer or the 

imaging of the velocity distribution at the free surface of the fluid [1, 2].  

 

     The squeeze flow involves the unbounded compression of the energetic formulation 

(the energetic material is free to flow in the radial direction upon compression in the axial 

direction, i.e., an important positive safety aspect) that is kept under isothermal 

conditions and partially or completely filling the space between two parallel and rigid 

circular disks.  One or both of the circular disks move in the axial direction at constant 

relative velocity, while the time-dependent force is being measured, or under constant 

normal force while the time-dependent relative velocity of the plate is measured [7]. In 

the analysis of the transport problem to derive the parameters of the shear viscosity and 

the wall slip of the energetic formulation, approximate solutions to this unsteady state 

problem can be obtained by assuming that the speed of travel of the disk is sufficiently 

slow so that the time derivatives in the conservation equations can be neglected, i.e., the 

“quasi-steady state assumption” [7,8]. A number of studies have been made on the 

squeeze flow for generalized Newtonian fluids [9-16]. Nevertheless, although its 
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literature is rich, the squeeze flow has not been fully exploited to facilitate the 

identification of parameters of constitutive equations and wall slip behavior of energetic 

formulations. In this paper, first typical hardware suitable for the rheological 

characterization of energetic fluids is presented followed by the analysis of the transport 

equations which represent the dynamics of the squeeze flow for the determination of the 

parameters of the shear viscosity and wall slip behavior of energetic formulation. 

Analytical as well as FEM based numerical methods are used in our methodologies in 

conjunction with the solution of the inverse problem for the determination of the 

rheological parameters.  

 

II. Squeeze Flow Hardware for Rheological Characterization of Energetic Materials 

 

A schematic representation of the squeeze flow is shown in Figure 1.  The energetic fluid 

sample is placed in between the two circular disks with a radius of R . Although different 

experimental configurations are possible, including the use of a constant normal force, 

our current configuration involves the top disk moving down at a constant speed of V, 

and the bottom plate being stationary. The time-dependent gap between the plates is 

designated as h , and the total force acting on the top plate is f . 

 

   The squeeze flow rheometer for energetics applications needs to have the following 

features:   

• For safety the squeeze flow rheometer should be explosion proof.  

• The unit needs to be run remotely, with no operator present during the 

characterization.  

•  The squeeze flow unit needs to be designed to be mobile and configured as a 

bench top unit.  

• The rheometer needs to be sufficiently easy to use so that the plant operators can 

collect the rheological characterization data to be used for process and product 

quality control.  

• The data analysis should be part of the data acquisition unit of the rheometer so 

that the operator/engineer need not be involved with data analysis.  
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• The parameters of constitutive equations and wall slip need to be generated 

immediately upon the testing of the sample to allow the use of the data in product 

quality control.  

• The unit needs to be easy to clean and the surfaces that come into contact with the 

energetic material can be easily replaced.  

 

    The squeeze flow rheometer, which satisfies all of these objectives, is shown in Figure 

2-4 (available from Material Processing & Research, Inc. of Hackensack, NJ [17]). The 

mechanical displacement to achieve the squeeze motion is generated by compressed air 

pressure (90 psi is sufficient). The squeeze flow rheometer is incorporated with an 

embedded computer, which allows real-time data to be collected and concomitantly 

analyzed. There are two sensors on the unit, a pressure transducer and a linear variable 

displacement transducer. The rheometer is designed to press specimens, which are 

collected from mixers and processors that are located in the immediate vicinity of the 

rheometer so that solvent loss and temperature control are not issues. Especially with 

viscoplastic, structured fluids resting the specimens during relatively long periods of 

thermal stabilization alters the rheological behavior by building up a yield stress.  

 

    The source code for the data analysis is burnt into the chip so that the data analysis is 

immediate. The data can be transferred or stored on a flash card, which can then be 

immediately downloaded to another PC or using field point technology, the rheometer 

can be run wireless, or through the internet. A web camera is integrated so that the 

squeeze test not only can be run remotely but also can be monitored remotely. One 

explosion-proof version, which is being used in the gun propellant industry, is driven 

only through three buttons and the parameters are displayed on an intrinsically safe LCD 

display (Figure 4). In the following the analysis of the data emanating from the squeeze 

flow rheometer is discussed in conjunction with the data emanating from the unit.  
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III. Squeeze Flow and Method to Determine Rheological Parameters of Energetic 

Materials 
 

Energetic suspensions and gels generally exhibit relatively high shear viscosity values to 

give rise to creeping flow conditions upon being subjected to squeeze flow. Under the 

resulting typical relatively low Reynolds number conditions the inertial terms in the 

equations of motion can be neglected.  The governing equations for axisymmetric flow of 

incompressible fluids and under quasi-steady state and isothermal conditions become:  
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Here vr and vz  are the velocity components in the radial and axial directions, i.e., r and z, 

respectively, p is the pressure, and rrτ , zzτ , τθθ   and rzτ  are components of the deviatoric 

stress tensor. If the rate of movement of the plate, V, is sufficiently slow to allow 

viscoelastic effects to be considered to be negligible, generalized Newtonian fluid 

constitutive behavior is applicable, i.e., ( )∆−= IIητ , where τ  and ∆  are the stress and rate 

of deformation tensors. ( )II η  is the shear viscosity material function varying as a function 

of the second scalar invariant of the magnitude of the rate of deformation tensor,  
•

γ , i.e., 

II/2γ =
•

 . The squeeze flow is subject to the following non-linear wall slip condition, 

i.e., slip velocity, Us, versus the shear stress, τrz: 

             
 

                                                        Us = β  |τrz | sb,        (4)                      
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where the Navier slip coefficient, β, and the slip exponent, sb, are parameters of the wall 

slip behavior, which are related to the shear viscosity material function of the binder of 

the suspension and the apparent slip layer thickness for concentrated suspensions [5].  

 

The slip coefficients for the top and bottom disks, i.e., βt and βb respectively, can be 

different due to differences in roughness or the materials of construction of the two 

plates. For 1-D flow the shear stress for the Herschel-Bulkley type viscoplastic 

constitutive equation becomes )| 1 /dz(dv/dzdv|m r
n

ryrz
−−±= ττ  for ⏐τrz⏐ ≥ τy (- sign is 

used for negative shear stress, τrz) and the shear rate (dvr/dz) = 0 for ⏐τrz⏐ < τy 

(Herschel and Bulkley [18]). Here, m is the consistency index, n is the power-law index, 

and τy is the yield stress. Thus, for energetic suspensions the shear viscosity of which is 

represented by the Herschel-Bulkley fluid subject to wall slip there are five parameters 

{ m , n ,τy, β, sb} that need to be determined for representing the shear viscosity along 

with the wall slip condition. For energetic suspensions, sb can be estimated from the 

shear viscosity material function of the binder and the concentration and properties of the 

rigid particles [5]. The solution of the squeeze flow problem for the Herschel-Bulkley 

fluid also provides the solutions for Newtonian fluid with n=1 and τy = 0; Bingham fluid 

with n=1; power-law behavior with τy = 0; all subject to either no slip or slip at the wall.  

 

    The force acting on the top plate is:  
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The problem (1)—(5) can be solved either numerically or analytically to determine the 

normal force,  f,  acting on the moving plate (i.e., [8-16]). 
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   Reasonable agreement between FEM [13] and the analytical solution [11] of the 

squeeze  flow subject to the lubrication assumption was found under certain conditions. 

For example, for the modified Bingham number (τy/m(V/R)n) range of 0 to 100,  the 

percentage deviation of the total normal force, f, calculated on the basis of the lubrication 

assumption differed by less than 10% of the total normal force determined with the FEM 

analysis for the no-slip condition. However, the agreement between the total normal force 

values determined with FEM versus the analytical solution using the lubrication 

assumption was shown to deteriorate with inclusion of wall slip versus the no-slip 

condition, with increasing wall slip coefficient and upon increasing the yield stress value 

of the fluid [13]. It was suggested that FEM analysis or experimental data are necessary 

to determine the conditions under which the lubrication assumption can be assumed to be 

valid for squeeze flow.  

 

IV. Squeeze Flow and Inverse Problem Solutions for Determination of Rheological 

Parameters: Herschel-Bulkley Fluid with Wall Slip 

 

As indicated earlier the inverse problem solution of the isothermal squeeze flow for the 

Herschel-Bulkley fluid subject to wall slip outside of the lubrication flow region requires 

a numerical solution. Here, the FEM approach is followed to solve the governing  

equations, and a combination of the steepest descent and the conjugate gradient methods 

[20] is employed to carry out the minimization required for the solution of the inverse 

problem. Starting from an initial guess, the minimization begins with the steepest descent 

method and, after certain number of steps in searching, switches to the conjugate gradient 

method. The FEM code was validated using experimental data, and the effectiveness of 

the minimization program has been tested (see Tang and Kalyon [21]).  

 

   The validity of the inverse problem solution methodology was probed directly by 

employing the FEM solution for both the linear and non-linear wall slip conditions  

(Kalyon and Tang [22]). The investigation in [22] suggested that the parameter  domain 

was subdivided into multiple subdomains and initial points pertaining to each subdomain 
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were taken to arrive at the global minimum, which was considered to represent the 

solution of the problem for all four parameters.  

 

    This approach of parameter domain division is based on the observations from 

extensive numerical experimentation, which suggested that when the number of 

parameters sought is equal to or greater than three, reasonable estimates could only be 

made if the initial guesses for parameters sought are relatively close to the true values. 

However, how do we know where the true solution lies, prior to the characterization of 

the fluid, so that the initial guesses are made to approach the true values of parameters? 

The method involves the division of the parameter space spanned by {m, n, τy, β} into 

subdomains and starting the minimization with multiple initial conditions belonging to 

each subdomain. In conjunction with this method the objective function arising from each 

subdomain can be compared with the others and a global minimum can be determined. 

To illustrate, let us suppose the smallest possible values for  ynm τ,, , and β are 

respectively 
minminmin ,, ynm τ , and ,minβ  and the largest possible values are respectively 

maxmaxmax ,, ynm τ , and maxβ . We divide the whole possible domain of parameters 

×],[ maxmin mm  ×],[ maxmin nn ×],[
maxmin yy ττ ],[ maxmin ββ into multiple subdomains (with the total 

number of subdomains given as mL · nL ·
y

Lτ · βL ) as:  

                                                     ,11,)1(min +≤≤∆−+= mLImImm                       (6)                                   

                                                     ,11,)1(min +≤≤∆−+= nLJnJnn                         (7)      

                                                     ,11,)1(
min
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y

LKK yyy ττττ                  (8)                  

                                                     ,11,)1(min +≤≤∆−+= ββββ LMM                    (9)    
 
 
where =∆m mLmm /)( minmax − , =∆n nLnn /)( minmax − , =∆ yτ

y
Lyy τττ /)(

minmax
− , 

=∆β max(β ββ L/)min− , and mL , nL , 
y

Lτ , and βL  are the numbers of subdomains in 

directions of y,n,m τ , and β , respectively. We start the minimization from each {I, J, 

K, M}, and upon obtaining all of the solutions pertaining to different sets of initial 
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conditions the global minimum is obtained and the corresponding set of parameters 

obtained is considered to represent the solution. Provided that the division is sufficiently 

fine and the objective function is continuous and smooth, it is anticipated that the 

procedure will find the global minimum. Additional information on the methodologies 

utilized can be found in the Appendix.  
 

V. Concluding Remarks  

 

The squeeze flow rheometer is introduced as a convenient method for the rheological  

characterization of energetic formulations. The hardware needs to be used in conjunction 

with software and source codes developed for the solution of inverse problem for the 

determination of the parameters of viscoplastic constitutive equations and wall slip of the 

energetic formulation.  If the parameter space is divided into multiple subdomains so that 

initial conditions would coincide with each subdomain, the reliability of the search 

method increases and reasonable estimates for obtaining up to four parameters can be 

obtained. The advantage of the squeeze flow in conjunction with inverse problem 

solution for the determination of the parameters becomes apparent upon considering that 

the squeeze flow test takes only a few minutes versus the weeks of work generally 

involved in collecting conventional rheological characterization data,  for example, 

capillary flow using multiple capillaries and multiple apparent shear rates run for each 

capillary for the characterization of energetic fomulations.  
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Appendix A  Inverse Problem  for Parameter Estimation  

    

     Given a set of experimental data for the forces e
M

ee fff <⋅⋅⋅<<< 210  exerted on the 

top plate to drive the flow at gaps  021 >>⋅⋅⋅>> Mhhh , the least square objective 

function becomes:  
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normal forces on the plates given by an analytical or a numerical solution.  

 

     Let m, n, τy, and β be real numbers and α={m,n,τy,β}. The parameter estimation can 

be formulated as the following inverse problem: 
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Minimization of the inverse problem  (A2) and (A3) can be carried out using various 

methods including the steepest descent method, the conjugate gradient method or 

combinations of multiple methods [19].  In the search for the minimum, the derivatives of 

the objective function are evaluated using central differences, for example for searching 

four parameters:  
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 LIST OF CAPTIONS 

 
Figure. 1. Schematic representation of the squeeze  flow. 
 
Figure 2. Squeeze flow rheometer hardware. Overall view.  
 
Figure 3. Squeeze flow rheometer hardware. Squeeze of the sample.  
 
Figure 4. An explosion-proof version used in the gun propellant industry. 
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