Using Brownian Dynamics to model nanoparticle aggregation under shear

Sergiy Markutsya, Shankar Subramaniam, Rodney O. Foz, and R. Dennis Vigil,
Towa State University, Ames, IA

Introduction

Light-scattering data for the aggregation of colloidal nanoparticles shows that hybrid aggregates
with two different fractal dimensions can be formed depending on the magnitude and duration of the
applied shear (Mokhtari et al).! Formation of such super-aggregate structures with fracal dimension
Dy = 2.55, and their reverting to D; = 1.8 depending on the shear condition, is not completely
explained yet. Simulations can provide insight into this behavior, provided they can accurately
capture the essential aggregation physics. Brownian Dynamics (BD) simulations are used to study
aggregation in this work. First, the numerical convergence requirements for BD simulations to
study aggregation are established. These require that the computational time step be small enough
to resolve three characteristic times: one corresponds to the frictional coefficient that is related to
the dissipation of energy in the system, the second characteristic time is related to the shear force
that applied to the system, and a third characteristic time corresponds to the systematic force that
acts between nanoparticles. Statistics of nanoparticle aggregation such as cluster size distribution
need to be estimated from the BD simulations. If BD of an equilibrium system is performed,
then one can form estimates of such statistics using time-averaging once equilibrium is reached.
For non-equilibrium, statistically time-evolving systems, time-averaging cannot be employed and
ensemble averaging is needed. Since aggregation is a time-evolving process even in the statistical
sense, multiple independent simulations (MIS) are needed to extract aggregation statistics for the
BD simulations. In order to establish convergence of the BD results, numerical tests are performed
to determine the time step and MIS required for accurate solution of simple system. Our tests
reveal that even for such simple systems, a large number of MIS is needed to accurately estimate
the probability of particles forming aggregates. Estimates for a system of NV particles indicate the
need for computational speed-up. Strategies to speed-up accurate BD calculations of aggregation
are explored.

Simulation method

In a Brownian Dynamics simulation, the equations governing the evolution of a system of N
monodispersed nanoparticles in a sheared liquid medium are

dl‘i = V; dt

F(r:
dv;, = —v(v;—u(r;))dt+ gz)dt—i—ZvdWi, 1=1,...,N (1)

where r; and v; are the position and velocity of i nanoparticle respectively, and m is the mass of
the nanoparticle. The first equation merely states that each nanoparticle’s position evolves by its
velocity. The second equation states that the velocity of a nanoparticle evolves under the action of
(i) frictional drag arising from relative motion with liquid medium through the term —v (v; — u(r;))
(where +y is the friction coefficient), (ii) a systematic force F(r;) arising from interaction with other
nanoparticles, and (iii) a random component ¥,dW; where dW; is the increment of a Wiener
process. In the frictional drag term, u(r;) is the fluid velocity at the nanoparticle location. (The
solvent molecules in the fluid are not explicitly represented in the BD method.)



The systematic force F(r;) acting on the i nanoparticle arises due to the interaction with
all other V — 1 nanoparticles, and is obtained from a specified pair-potential. The coefficient of the
Wiener process increment is specified such that X2 = 2vo7 | where 0, = kgT/m is the velocity
variance, kg is the Boltzmann constant, and 7T is the reference temperature. In the limit of infinite
dilution the nanoparticles do not interact and the systematic force is zero. This specification of >,
ensures that in the absence of a systematic force, the velocity variance evolves to a stationary value
given by o2 . The self-diffusion coefficient in the infinite dilution limit D, is given by

 kgT
-

De (2)
When the liquid medium is sheared, the fluid velocity uf' that is induced by the shear is
given by

Uq, (I‘) = G5a16ﬁ2rﬁa (3)

where G is the shear rate and 74 is the location of in tensor notation. An important nondimensional
quantity that characterizes the ratio of the shear timescale to the diffusion timescale is is the Peclet
number Pe, which is defined as
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where D is the self-diffusion coefficient in the infinite dilution limit and o is the particle diameter.

The systematic force F(r;) representing the interaction between nanoparticles is calculated
as

F(r;) = VU (5)

where U is a model pair-potential of interaction. In this work two potentials are used. The Lennard-
Jones (LJ) potential, which is given by

Ul(ry;) = 4e <ﬁ)12 — (ﬁ)ﬁ = e [2'? — 2f] (6)
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where z = r;; /o, r;j = |r; — r;| is the distance between centers of the i and j™ particles, and ¢ is
the well-depth. In the present work € was chosen to be equal to 8kgT.

The DLVO potential consists of an electrostatic repulsion and a van der Waals attraction:

exp[—k(zx —1)] A
— —h 7
; ~h(a) (7)
where £ is the reduced inverse Debye length, J, is the electrostatic coupling constant related to the
surface, A is the Hamaker constant (is equal to 6.5 x 10720 for latex particles in water), and h(x)
describes the van der Waals attraction:

W) = 211+%+2m(1—i) (8)
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The parameters of DLVO potential where chosen in such way that the position of the second
minimum is x = 1.061 with well depth ¢ = 4kgT, and an energy barrier equal to 80kgT at
r = 1.01.



Temporal resolution of BD simulations

By reviewing velocity equation (1) we can distinguish three characteristic timescales which should be
resolved. Those characteristic timescales are related to the frictional term, shear term, and timescale
that is related to the systematic force. In order to get an accurate solution, the computational time
step should be small enough to resolve all three timescales that are represented in this problem,
which implies some restrictions.

Timescale 7, which is related to the frictional part can be represented as
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where D, is the self-diffusion coeflicient under an infinite dilution limit.
Timescale 7, which is related to the shear part can be represented as

1 o?
TG 4PeDo. (10)
And the timescale 7 which is related to the systematic force can be represented as
T = 7m0-0-v00 (11)
€

By defining those characteristic timescales it is possible to determine the computational
time step At. When modeling diffusion process with no shear by BD, timescale separation tech-
nique can be applied, as was shown by Giro et al.? In this case, three different algorithms of solving
Langevin equation (1) can be used based on the timescale relations. When 7, < At < 7p an
algorithm proposed by Ermak et al.® can be used. By applying this algorithm position and velocity
Langevin equation (PVL) is reduced to the position Langevin equation (PL). If 7, ~ At < 77 an
algorithm proposed by Allen* and Vangunsteren® can be used. In third case, when At < 75 and
At < 7, it is possible to use an algorithm proposed by Turq et al.° By modeling an aggregation
process of latex nanoparticles in water for our choise of physical parameters all timescales have
similar order of magnitude, such as 7, = 10.5, 7, = 0.25, and 7 = 0.125 in reduced units o/o,__.
Thus, for aggregation we have to resolve all the timescales and the timescale separation does not
exist. Based on this conclusion the computational time step At is needed to be chosen to be much
smaller than a minimum value of those timescales. From the other hand the computational time
step should be big enough for a reasonable running time. These limitations impose restrictions on
such values as a Peclet number Pe and potential’s well depth .

The right choice of the computational time step is a necessary but not sufficient condition
to obtain an accurate computational result. Usually, some characteristic quantities should be ana-
lyzed in order to estimate how accurate an obtained solution is. From our previous work” we know
that when using BD simulation to model an aggregation process, such characteristic quantities as
Diffusivity and Radial Distribution Function (RDF) should be correctly described in order to get
an accurate results.

As it was shown by Giro et al.?2, BD with Lennard-Jones potential is a valid method to
model a diffusion process. However, at the same time the RDF is not described correctly. It was also
shown that if interaction potential is changed to get a correct RDF (by replacing LJ potential with
mean field potential (MF), the diffusivity data are going out of range. For the aggregation process



both diffusivity and RDF are important: diffusivity is related to the dynamics of the aggregates
formation, and RDF is related to the structure of the aggregates, thus those parameters should be
described correctly. A numerical experiment was set up to investigate this issue.”

In those work aggregation process was simulated by BD and Molecular Dynamics (MD)
where MD was used as a reference system. For MD simulation a system with 1,354 solute particles
(volume fractions fy(sorutey = 0.0055) and 148,753 solvent particles ( fy(sowenty = 0.6) which interact
through LJ potential was used. Solvent and solute particles had the same size but different masses
(Mesotute/Msotwent = H0) and different potential’s well depths (€sorute/Esotvent = 4). For BD simulation
a system with 1,354 solute particles that interact throug the same LJ potential with well depth
EsotuteWas used. Such parameters as diffusivity and RDF were estimated for both MD and BD simu-
lations. By comparing those parameters it was found that by modeling an aggregation process with
MD and BD similar results for diffusivity and RDF were obtained. This fact brought us to the next
conclusions: BD is a valid approach for calculating diffusion in far from the infinite dilution limit;
getting simultaneously diffusion coefficient and RDF in correct way is critical for right description
of the aggregation process.

Convergence of statistics

The multiple independent simulations (MIS) are needed to extract aggregation statistics. Therefore,
to establish a convergence of BD simulations, a numerical test was performed to determine the time
step and the number of MIS required for accurate solution of simple one-particle system. For this
test a simple one dimensional system with one-particle was used. In this case the Langevin equation
can be represented as:

dr = v,dt (12)
F
dv, = —~yvdt+ %)dt + 2, dW

For the systematic force calculation a simple general ramp-well potential with two wells was used.
Schematic plot of this potential is represented on Figure 1, and it is defined as
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where x, — o is the width of the first well, L — x, is the width of the second well, and z, is related
to cut-off distance.
For such system, the PDF solution has a form®

P(z,v,) = C,P(z)C,, P(v,) (14)
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where

P(x) = C, exp {_773;2 U(x)} (15)

Plun) = Co exp { = 2L K00} (16)
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Figure 1: Schematic of general ramp-well potential for 1-D case

where U(x) is the potential energy, and K (v,) is the kinetic energy.

Constants C, and C),, can be found by integrating these equations over all values of z and
v, and applying those integrals to be equal to one:

v 1
C, = e
* ™ 2

c, - [W (1 ~exp { 223;}) (L xa)} B (17)

In order to estimate the MIS number, it was defined the probability to have particle in
the trapped state (particle lies in the interval o < = < x,), which is related to the probability of
particles forming aggregates, where

2m(o — 24 2
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After analytical definition of PDF solution, a set of numerical tests was performed to
define the dependence of error on computational time step At and MIS number. For this purpose
the system with such parameters is setting up: ¢ =1, m =1, e =1, v =1, (z, —0) = 1,
(L —x,) = 0.6, and o _ = 1. All the data are recorded at time 7,,, = 10,000,000 in reduced units
(0/0y,.)-This set of parameters yelds the analytical value for the probability that particle will be
in the trapped state as p, = 0.741.

The computitional error can be defined as

€= {p}M,At — DPa (19)

where M is the number of MIS, and p, is an analytical value for the probability to find particle in
the trapped state. This error can be decomposed on the statistical error 5, and deterministic error




e = {Phuac—pa = [{(Pharae = ((PHad + [PV s~ pul = 5,4+ D, (20)
where

Sp = {ptmae — {p}H A (21)

Dy = {p}) s~ 1o (22)

where {p} s s is the experimental data for the probability to find particle in the trapped state, and
({p}) A, is not known, but it can be estimated as

({P}) At = PMpaws  Minaz = 10,000,000 (23)

where M, ... is the maximum number of MIS for the system.
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Figure 2: Deterministic error versus time step

Deterministic error was analyzed to define the dependence of error on computational time
step At. It should depend on At as

D, ~ At (24)

The linear dependence between time step and deterministic error can be expected, because the
deterministic error is defined as difference of first moments of p, and this is the case of the weak
convergence. It was found that deterministic error D, was decreased almost linearly (slope is equal
to 0.92) with decreasing the time step At, as can be seen from the Figure 2.

Statistic error is analyzed to define the dependence of error on the number of MIS (M).
Statistical error depends on M as

S, =CM~y (25)

where v = N(0, 1) is the normal distribution. Figure 2 represents the results of this test. From this
figure we can determine that the slope is equal to —0.54 that is very close to the expected theoretical
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Figure 3: Statistic error versus the number of MIS M

value of —0.5. Based on the data represented in Figures 2 and 3 we can make a conclusion that
results, obtained from those tests are consistent with the analytical results which validates the code.

The next question which we address is how many MIS are required to reduce statistical
error S, below a required tolerance level? To answer on this question the following computational
experiment was performed. BD code for a single particle under the general ramp-well potential was
running for a long time (from 7,, = 5,000 to 7,, = 15,000 with time step At = 0.002 in reduced

Figure 4: Ratio of the trapped time over the total time versus measurement time

units (0/o,. ). The computitional estimate of p, is given by T}./T,,, where T}, is the total time



spent by particle in the trapped state, and 7,, is the total measurement time. Dependence of this
value on non-dimensional value T* = T,,0,_ /o is shown on the Figure 4, where an analytical value
is represented by dashed line. It is expected that value of this ratio will approach to the analytical
value for the probability to find a particle in the trapped state p,, calculated from (17). According
to this plot the computed value closely approach the theoretical value only after 777 = 5,000 in
reduced units o/0,_. Based on this figure the number of MIS M is estimated by

T,
(Ti)
where (T3,) is the average time that particle spent in the trapped state which was calculated by

running one-particle case for 1,000,000 times, or one run of 1,000,000 independent particles. Those
results are represented in the Table 1.

M=

(26)

As can be seen from the Table 1 more than 100 MIS are required to have an error value
less that

Table 1. Expected MIS for the desired precision. Error is calculated as e = |py. — pal/pa-

Error e(%) | por = o /T | (Tir)0w. /O M
10 0.8208 5.08 14.97
1.5 0.7522 4.51 116.19
0.5 0.7450 4.34 888.48
0.2 0.7397 4.29 2445.17
0.1 0.7420 4.32 2990.74

1.5% for one-particle case, and by requiring higher precision the number of MIS can easily reach
up to several thousands. Thus, by increasing the number of particles in the system, the number of
MIS will also increase by power law. This leads us to the conclusion that accurate estimation of
aggregation formation for system of N particles requires a significant computational speed up.

Light Scattering analysis

Light scattering is the most frequently used tool for the analysis of aggregate structure.'® For the
system of N nanoparticles, the intensity of elastically scattered light can be represented as

I(q) = NF(q)S(q) (27)
where q is the scattering wave vector, which is defined as
am
4= lal = 5sin(0/2) (25)

where 6 is the scattering angle, X\ is the wavelength of light, S(q) is the static structure factor,
where

Sta) = >0 explia - (v~ x0) (29)

Because nanoparticles are spherical particles of uniform density, then Eq.(8) can be reduced to

N
Z expliq - ry]
k
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(30)
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and F(q) — F(q) is the form factor for a sphere,

sin(ga) — qa cos(ga)]’
(qa)?®

Flg) = |3 (31)

Because all modeled system are isotropic in cluster position and orientation it is valid to
perform a spherical averaging by selecting over 200 different q values of constant magnitude, so
S(q) — S(q). This was done by creating the set of angles (6, ¢) according to a uniform differential
solid angle df2, and ¢ is calculated from:

q = |q|(sin(8) cos(¢)e; + sin(f) sin(¢)es + cos(h)es) (32)

where e; is the i Cartesian unit vector.

In case of a self-similar fractal aggregate with a fractal dimension Dy, I(q) has the following
three regimes: first regime is for small values of ¢ (so called Rayleigh regime), where I(q) = N the
number of monomers per cluster. Second regime is for intermediate values of ¢, where I(q) ~ ¢~ 7.
And third regime is for very large ¢ when Porod’s law can be applied, so I(q) ~ ¢~*. Analysis of
modeled clusters with LS technique is a significant tool which can give such structure parameter like
cluster’s fractal dimension D;. Comparison of this the fractal dimension with expected or measured
values can give a good estimate of how accurate a BD simulation is.

Results and discussion

In this work the system of 108,882 monodispersed nanoparticles with diameter ¢ = 2a = 3.4 A
where o is the monomer radius, and box size .. = 117 in monomer diameters are selected. The
values for timescales are 7, = 10.5, 7, = 0.25, and 77 = 0.125 in reduced units of o/0,_. Based
on those timescales the computitional time step is chosen to be At = 0.0025 in reduced units of
0/0,... At least three MIS is runing to average all data for light scattering analysis.

In order to speed up calculation of the systematic force F', a cut-off distance r, is introduced.
In this case if the distance between particles is bigger than a cut-off distance r > r. the systematic
force is equal to zero. Because, by introducing r. we introduce some additional simplifications it is
important to know how Light Scattering data depends on the value of cut-off distance. To answer
this question BD code with implemented LJ potential is running two times with two different cut-
off distances: r. = 3 and r. = 5 of monomer radius. On Figure 5 LS data obtained for those two
cut-off distances is shown. The largest clusters have N = 8900 and N = 8717 for r. =3 and r. =5
correspondently and monomer volume fraction is f, = 0.035. The positions of cut-off distances
are marked by dashed line and labeled correspondently. According to Fry et al.!* in the interval
a/R,c < qa < 2 structure factor S(g) should be ~ ¢~P7, where D; = 1.78 is the fractal dimension,
and R, ¢ is the ideal gel point radius of gyration defined as'

1/(Dy—d)

/2
Ryc=a [kol (Df * 2) fU] (33)
Dy

where ky ~ 1.3, and d is the space dimension. However, in our case Dy ~ 3.0 for the range
(a/r. < qa < 2) for both cut-off distances. Such behavior can be explained in the way that by
implementing Lennard-Jones potential into BD the structure of the aggregate cannot be described
correctly for the scale of potential’s range. At the same time by setting up the cut-off distance




Figure 5: Structure of the largest cluster for 3-D BD simulation
with LJ potential (with r. = 5.0a and r. = 3.0a)

r. — oo the LS results should be similar to those obtained for r. = 5a, because for LJ potential as
r > ba, the interaction potential U — 0.

In the case of r. = 3a additional feature is observed. As can be seen from the Figure 5 in
the range a/R, ¢ < qa < 0.2, for both the curves S(q) ~ ¢~ '®. Therefore it could be reasonable
to expect that for case with cut-off distance r. = 3a in the range 0.2 < ga < 0.33 there will be
the same slope. But in fact this slope is different. This anomalous behavior should be investigated
more precisely, but the most reasonable explanation of this phenomena lies in the presence of the
local structure with the length scale of [; ~ 5a and its nature can be similar to that discovered by
Oh et al.'* When qa < a/R, ¢ the slope of two curves is identical and defines D; = 2.5. This is very
rough approximation because of the narrow range for qa which caused by small size of the system.
Increasing of the system size significantly increases the computational time that is required some
steps to speed up BD calculations.

An influence of different potentials of interaction on the shape of LS data is also investigated.
For this purposes LJ and DLVO potentials are chosen. It should be pointed out that DLVO potential
is very “sticky”, so when particle gets to an aggregate there is a very small probability that it will
leave this aggregate, while for the L.J potential there is a higher possibility for particle to escape
from an aggregate. Figure 6 represents LS data for two largest aggregates modeled with BD by
implementing LJ and DLVO pair potentials with cut-off distance r. = 3.0a for both potentials
with number of monomer in aggregate N = 28000 and N = 32000 for LJ and DLVO potentials
correspondently.

As can be seen from this plot, LS analysis gives different shapes of structure factor spectra.
This difference can be explained by presence of the anomalous area for the L.J potential in the range
0.2 < ga < 0.33, discussed above. At the same time the slopes for both potentials have similar
values for ga < 0.2 that allows us to make a conclusion that structure of aggregates modeled by BD
for DLV O and LJ potentials is similar for both potentials.

To investigate an influence of the shear onto the aggregation process a small shear is applied
to the system (Pe = 3.5 x 1072). In 3-D system shear was applied into the one Cartesian coordinate
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Figure 6: Structure of the largest cluster for 3-D BD simulation with LJ and DLVO potentials

only with zero shear at the middle of the system. In such case the system has two opposite velocity
gradients induced by shear (like liquid between two disks which are spinning in opposite directions).
From the previous work! it is known that when an aggregating system is exposed to the shear for
some initial time and then shear released there are three different system’s behaviors are observed
depending on the strength of the shear. In case of low shear rate (Pe < 1.0), the aggregates will
have essentially the same structure as without shear, with fractal dimension close to 1.7, however
it will require less time to reach the gelling state. By increasing the shear rate, system behavior
changing in such a way that immediately after releasing a shear in addition to the first slope that
corresponds to D; = 1.7 a second slope appears that corresponds to Dy = 2.5. However, further
Brownian aggregation changes this double structure, and by reaching the gelling state the only one
slope which is related to Dy = 1.7 is observed. When very high shear rate is applied, again, after
releasing a shear an additional slope occurs, but it is not vanished even when reaching the gelling
state.

The results of LS data for BD simulations for system with and without shear are represented
on Figure 7 for LJ potential. LS analysis shows a good matching of data for shear and non-shear
case for similar sizes of aggregates. A similar results where obtained for DLV O potential. It should
be pointed out that by applying shear to the system in order to have a similar size of an aggregate it
is required only 20 — 25% of time by comparing with a system with no shear. Those data represent
that BD simulation for system with low shear rate describes the system behavior in expected way
by comparing with the experimental results.

The next logical step will be to model an aggregation process under medium and high shear
rate by using BD simulation. The further increasing of the shear rate (increasing of Pe number)
requires decreasing of the computational time step At, therefore a significant speeding up of the
BD code is required.
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Figure 7: Effect of shear on the structure factor S(g) for BD with LJ potential

Conclusions

The Brownian Dynamics simulation method is investigated with the objective of determing if it is
an appropriate approach to model aggregation with and without shear. When modeling aggregation
with BD simulation all timescales have to be resolved with no timescale separation possible. An
estimate of the number of Multiple Independent Simulation shows that a high number of MIS
(M > 100) is required for one-particle system to reach a precision of 1.5% which makes this method
to be very expensive in terms of computational time for system with N particles. Light scattering
analysis can be successfully used to determine aggregate structure, however it requires to have a
large system with N ~ 800, 000, therefore some steps should be perform to speed up BD code. Light
Scattering analysis shows that BD approach describes the structure of aggregates in predicted way
for the range qa < 0.2. In case of a small shear rate BD approach models an aggregation dynamics
in an appropriate and expected way.

We propose several strategies to speed up BD code: decrease a cut-off distance to r. = 4.0a,
and to parallelize the BD code and get significant speed up by running code on multiple processors.
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