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Abstract 
 
 In this work, a model of spherical nanocapsule formation is developed to describe 
the solvent diffusion induced phase separation process from an initial homogeneous 
polymer/ solvent/ nonsolvent system. 
 The model is based on multicomponent mass transfer phenomena and takes into 
account the moving boundary induced by solvent extraction of the nanocapsule.  
In this model we use the extended version of the Maxwell-Stefan model for diffusion which 
takes into account of different sized molecules. In effect, polymer/ solvent/ nonsolvent 
system presents molecules with different molar volumes. Therefore to take into account of 
the volume occupied by molecules, Fornasiero and al. have extended the Maxwell Stephan 
formulation for Starkly Different-Sized molecules, assuming that the collision between 
molecules occurs only if they are of equivalent volume. Therefore the natural state variables 
are volume fractions. The diffusion coefficient of polymer depends on its concentration. 
The developed model is applied to describe nanocapsule formation and to predict the 
morphology associated with the formation of the thin polymer film. This model is solved 
numerically using a finite volume method based on the variable grid. 
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Introduction 
 
 Nanocapsule formation is due to the solvent diffusion induced phase separation. In 
this process, phase separation caused by the diffusion of solvent out of and nonsolvent into 
the nascent membrane 
 This process is similar to phase inversion process which is widely used in the 
fabrication of polymeric membranes for a variety of applications.  
 In phase inversion processes an initially homogeneous polymer solution becomes 
thermodynamically unstable due to external effects, and phase separates into a continuous 
polymer-rich phase that surrounds dispersed polymer-lean droplets. Any one or combination 
of the following driving forces can induce phase inversion of polymer solutions: temperature 
(thermal-induced phase separation) [1–3], nonsolvent (nonsolvent-induced phase 
separation/wet-casting) [4], evaporation (dry-casting) [5–11] and dry wet casting [12,13], 
water vapor (nonsolvent vapor-induced phase separation) [14–18], reaction [19] and shear 
stress (shear-induced phase separation) [20]. Many of the above-mentioned studies have 
included extensive modeling of the mass transfer and phase separation kinetics aimed at 
prediction and control of the morphology of the final membrane structure [21].  
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 The aim of the present study was to present a model of phases separation coupled 
with mass transfer for an open system with a moving boundary. The process chosen for 
modeling is the nanocapsule‘s formation by emulsion diffusion method. 

Nanocapsules formation 

Nanocapsules 
 Nanocapsules are synthetic colloidal systems ranging in size from 10 to 500nm, 
consisted of a core in which an active ingredient can built-in, and surrounded by a thin 
membrane of polymer (Fig 1) 
 
 
 
 
 
 

Fig 1 nanocapsule formation 
 

Materials and method 

Materials  
 The polymer used for the nanocapsules formation is poly-ε-caprolactone PCL 
(Sigma Aldrich Chemica Company Inc., USA). Its average molecular weight (Mw) was 
given by the supplier as close to 80,000 D. The oil was labrafac lipophilic WL 1349, a 
mixture of triglycerides of fatty acids caprylic (C8 )/capric (C10) from gattefossé. The 
solvent is the pure ethyl acetate from Laurylab. The stabilizer is polyvinyl alcohol (Mowiols 
40-88, 88% hydrolyzed, Mwca 127,000 D from Aldrich Chemical Company). Distilled water 
saturated with solvent is used as a non-solvent and distilled water as a diluent for the 
emulsion. 

Method  
 The method proposed to prepare nanocapsules in this study is the emulsification–
diffusion. The original of this technique is due to Quintanar-Guerrero [22]; this process 
involves the emulsification of a partially water-miscible solvent (previously saturated with 
water), containing the polymer and oil, in an aqueous phase (previously saturated with the 
solvent), containing a stabilizer. This emulsion is stable. The subsequent addition of large 
volume of water to the system causes the solvent to diffuse into the external phase, 
causing the polymer’s deposition around the droplets, then the formation of nanocapsules.
  

Process description 
 The nanocapsule formation is controlled by two phenomena:  the phase separation 
and the mass transfer and, thus by the competing kinetics between those two phenomena. 
At the beginning the original system is in a state of thermodynamic equilibrium. The dilution 
destabilizes this equilibrium. It causes the solvent to diffuse to the external phase and shifts 
the mixture composition inside the droplets. Thus we have the phase separation inside the 
droplets and the formation of the distinct nano-phases (polymer-rich phase, solvent rich 
phase and oil rich- phase) (Fig 2). At the same time the solvent concentration inside the 
droplet decreases because of the diffusion and the size of nanocapsule decreases.  
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 Eventually, if the composition and the operational conditions are selected accurately, 
nanocapsules are formed; their formation is principally controlled by the choice oh the initial 
composition of the system (polymer-oil proportion and polymer oil-solubility) and also by the 
competition between the formation of oil phase on one hand and the solidification of the 
polymer rich phase on the other. If the kinetic of the solidification is too fast, the phase rich 
in polymer becomes too viscous before the domain of oil phase have had enough time to 
form a continuous core and the oil droplets are fixed inside the polymer matrix, in this case 
nanospheres are formed.  
 On the other hand, if the kinetic of solidification of polymer rich phase is too slow the 
latter does not have a sufficient mechanical stability to withstand the mechanical stresses 
due to the coalescence of oil nanophases. Consequently the nanocapsules with the 
polymeric membrane are formed.  
  Finally, any changes inside the droplet are caused by solvent diffusion to the dilution 
phase.  
 
 

     
 

Solvent Diffusion             Phases Separation                    Nanocapsules 
Formation 
 

Fig 2: Phase separation during mass transfer processes 
 

 So the proposed model must describe a multicomponent mass transfer phenomena 
coupled with phase separation and must takes into account the moving boundary induced 
by solvent extraction of the nanocapsule.  

Modelling of nanocapsule formation 
 

 To model this process we investigate the problem of a single droplet. This droplet is 
suddenly plunged into infinite aqueous phase. We also assume that outside the droplet the 
solvent concentration is kept equal to zero because of the perfect stirring and infinite 
dilution.  We represent this system simply as two concentric spheres (Fig 3). The big one 
represents the aqueous phase and the small one represents the droplet 
 In the other hand we suppose that the driving force for the mass transfer outside the 
droplet is proportional to the droplet dissolution rate and we make the following 
assumptions: 
 

 There are two systems, the external one which represents the exterior of the 
nanocapsule  {solvent + non-solvent} and the internal one {solvent-water + polymer + 
oil} 

 Only three components are inside the nanocapsule (solvent, polymer, oil). The   
 solvent saturated with water has the same behaviour that the solvent alone. 

 Nanocapsules are represented by symmetrical spheres 
 Diffusion according to r (radius) 
 The energy of the mixture inside the nanocapsules is described by the Flory- Huggins 

 thermodynamic model 
 we have a moving boundary 
 The mass transfer at the interface of the droplet is described by the model of film 

Polymer 

Oil 

Oil

Solvent 

Polymer 
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Fig 3:  Schematic description of nanocapsule formation 

 

Model formulation for multicomponent system: Theory  
 In several work, the Maxwell–Stefan approach has been adopted to model the 
multicomponent mass transfer [23]. In this model the driving forces are given as a linear 
combination of the material fluxes (EQ.1). 
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where i  is one of the diffusing species in the mixture (for polymer/solvent/nonsolvent system 
subscripts 1, 2 and 3 refer to solvent, nonsolvent and polymer, respectively); ic  is the molar 
concentration of the component i ; ct is the total molar concentration; ijD is the binary 
Maxwell-Stefan diffusivity; iμ  is the chemical potential, R the ideal gas constant, T the 
average temperature, iN  is the molar flux of the component i ; Nc the number of component, 

ijk  is a friction factor; it’s proportional to the product of the molar concentrations: 
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 Stefan-Maxwell model has been successfully applied to describe multicomponent 
diffusion in simple fluid mixtures [23]. Recently, it has also been used to describe transport 
through polymeric membranes in a solution-diffusion framework. However application of 
Stefan Maxwell model to a solvent-membrane system presents a great problem: the molar 
concentration of the membrane is ill-defined because the molecular weight of a membrane 
is unknown [24]. 
 
 To circumvent this deficiency, several suggestions have been made [25-30]. 
Nevertheless the extended Maxwell-Stefan Theory (EMS) developed by Fornasiero and al. 
remains the more attracting one. This model is developed for solutions of molecules that 
are starkly different in size. 
 
 In the extended Maxwell-Stefan Theory, the polymer molecule is modeled as a 
collection of connected segments. Each segment has roughly the size of a solvent molecule 
and all segments in the polymer molecule have identical frictional properties. Compared to 
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Maxwell-Stefan model, in the EMS the friction factor between the colliding molecules is 
related to the molar segment concentration rather then the molar species concentration. 
Fornasiero and al. (EQ.2) 
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Where 0

ic  and 0
jc are the segment molar concentrations of species i and j, 0

Tc is the total 

segment concentration, and ijD0 is the EMS diffusivity. Then EQ.1 becomes 
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Where the superscript 0 refers to segments, ns is the number of segments per molecule of 
species i and 0

iN  is the segment molar flux of the component i. 
  
EQ.4 is best rewritten in terms of measurable macroscopic quantities. Fornasiero and al 
assume that there is no volume change upon mixing and convert the segment mole fraction 
into a species volume fraction 0

iφ according to 
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with    ii φφ =0   and siii ncc =0       

sin is the number of segments per molecule. 0
iv  is the molar volume of an i-segment. 

Although choice of the segment unit (and therefore 0
iv ) is arbitrary, it is reasonable, based 

on physical arguments, to assume equal size for all segments, independent of species i. 
With the assumption vvi =0  for any species i, it can be shown that vcT /10 = . EQ. 4 becomes 
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The constraints that must be satisfied are 
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Where 0

tN  is the total segment molar flux of a system. 
 
 A convenient choice for v is the molar volume of the pure solvent or that of the 
component that has the smallest molecules. This choice of v is identical to the choice of the 
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lattice size in Flory-Huggins polymer solution theory [31] that is widely used to express the 
chemical potential of a species in a polymer solution or in a membrane as a function of the 
condensed-phase composition [32].  
 EMS is consistent with restrictions given by the Gibbs-Duhem equation and by 
Onsager’s reciprocity relations. 

Model formulation for multicomponent system: Application to the nanocapsule  

Internal problem: inside the nanocapsule 
 
EQ.6 with constraints EQ.7 applies to the inside of the capsule  
 
In this example   
 
where subscripts 1, 2 and 3 refer to solvent, nonsolvent and polymer, respectively. 
 
Because of the Gibbs-Duhem relationship (Equation 7) only (Nc - 1) of the chemical 
potential gradients are independent  
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where the chemical potentials of each component are given by 
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with                ,       is the molar volume of the component i, g is the free energy of mixing, 
given by Flory–Huggins model:   
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ijχ  is the Flory–Huggins interaction parameter between species i and j 

  
 Note that the Gibbs free energy is appropriate to systems that approach equilibrium 
at prescribed temperature and pressure. The physics literature generally prefers the 
Hemholtz free energy since statistical mechanical studies usually prescribe temperature 
and volume. Also, they tend to use a per molecule rather than per mole basis, so that the 
free energies are scaled with kT (k is the Boltzmann factor) rather than RT. These 
differences have no substantial effect on what follows [33]. 
 In the other hand, the continuity equation for a component i in the nanocapsule is 
obtained from a differential material balance 
 

( )
r
Nr

rt
rtC ii

∂
∂

−=
∂

∂ 2

2

1),(
            Equation 10 

0
1

0
1

=Δ=Δ ∑∑
==

i

Nc

i is

i
i

Nc

i
i vn

n μφμ

0
i

i
s

m
i vnv = m

iv

321 === ioriori



 7

 
Therefore we have with segment volume fraction 
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External problem: Outside of the nanocapsule 
 The mass transfer at the interface of the sphere is described by the model of film. In 
this model we suppose that all of the resistance to mass transfer is concentrated in a thin 
film, or layer, adjacent to the phase boundary [23]. 
 
So the diffusion process is fully determined by  
 

( )SCCK
dt
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where 
 
     : Molar number of the component i (mol) 

*
iC : Equilibrium molar concentration of the component i (mol/m3) 

iC : Molar concentration of the component i (mol/m3) 
    : The total interfacial area for mass transfer (m2) 

iK : Mass transfer coefficient (mol/s) 
 
 Outside of the nanocapsule, only the solvent diffuses; the flows of other components 
are assumed to be equal to zero. Accordingly the rate of change of the solvent number of 
mol is  
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  In the other hand we have  
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with          is the volume of the external phase. It is written as follows 
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where Rext is the radius of a sphere which represents the nanocapsule’s environment and 
Rt is the nanocapsule radius.  
 
 We assume that the nanocapsule radius moves with the velocity dtdRt / . So the 
derivative of the volume with respect to the time is written as  

S

in

extV
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Upon replacing dtdVext / and extV by their values in EQ.15 and rearranging this equation 
one finds the rate of change of the solvent concentration in the external phase 
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The rate change of the nanocapsule radius  
 
 The objective of this paragraph is to elucidate the correlation mechanism between 
the nanocapsule radius motion and the mass transfer rate at the interface. 
 Because of the solvent diffusion toward the external phase, the nanocapsule radius 
moves with the velocity dtdRt / . At the interface of the nanocapsule only the solvent 
diffuses. Accordingly the rate change of the system number of mole corresponds to the 
solvent flow which it diffused towards the external phase. 
 The rate change of the system number of mole can be calculated form the following 
equation   
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Where nt is the total number of moles and ( ))(tRrtN =  is the total molar flux at the interface of 
the nanocapsule (r = Rt) and S is the total interfacial area for mass transfer. 
 
We assume that the molar flux of the polymer and the oil is equal to zero at the interface of 
the nanocapsule hence 
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The number of moles of each component is calculated as  
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Using the total number of moles nt definition one can write 
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With this definition the derivative of nt with respect to time may be written as  
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 On the other hand at the interface of the nanocapsule, the solvent molar flux inside 
the nanocapsule is assumed to be equal to the solvent molar flux in the external phase 
(because of the Flux continuity). Consequently we can write 
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Consequently  
 

∑∑
==

+=−
Nc

i
i

in

tt
Nc

i

i

is

t

dtvn
dRR

dt
d

vn
R

SCCK
1

0

2

1
0

3

1
*
11

4
3
4

)( φπφπ
         Equation 25 

 
The rate change of the nanocapsule radius is written as 
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Boundary conditions 
 This model will be solved subject to following boundary conditions  
 
At 3,2,100 0 === iNr i            Equation 27 
 
At the interfaces the continuities of flux are imposed. 
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The equilibrium molar concentration of solvent *

1C  is equal to the molar concentration of 
solvent at the interface. 
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And it can be writing in term of volume fraction  
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Finally we assume that the diffusion coefficient of polymer depends on its concentration. 
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Numerical resolution 
 
 The above equations have been spatially discretized by using the finite volumes 
method with a variable grid size in order to get a system of differential algebraic equations 
of time which will be solved using The Petzold–Gear method (DASPG routine of the IMSL 
package). 

Spatial discretization 
 The domain is initially discretized using a one-dimensional spherical grid directed 
positively towards the right. To write the scheme of discretization in J, we will indicate by 
J+1 and J-1 the node located immediately on its right and its left (Fig 4). The "control 
volume" is centered in J and has a Δr as a dimension. This volume is bounded by j and j-1.  
 

 
 

Fig 4: The scheme of discretization 
 
 We assume that the flux leaving one control volume is the same as that entering the 
adjacent volume and inside each volume, both physical and chemical properties are 
considered constant and equal to the volume-average value. 
 
 So by definition x the volume-average of the variable x  in the volume V is given by 
the following equation 
 

∫≡
V

dVx
V

x 1
              Equation 31 

 
And for spherical coordinate  
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 Finally the partials differentials equations are integrated on each of the control 
volume. 
 
 Notice that the boundaries of integration for each volume are variable (because of 
the moving interface). So we use the Leibniz integral rule to calculate the integral of the 
continuity equation (EQ.12)  
 In order to facilitate numerical treatment of the moving interface, the following 
coordinate transformation is used: 
 

J-1 J J+1

Control volume
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j j-1
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 Consequently, the final set of the continuity equation for each component in each 
volume becomes the following 
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Upon replacing  
dt
drj  and 

dt
drj 1+  with their value in EQ.36 and calculation the integral. Eq.36 

becomes the following 
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 The development of EQ.11 in the case of moving boundaries introduces a new term 
relative to convection induced by solvent diffusion inside the nanocapsule. This term 
elucidates the interface motion. It also explains that the solvent diffusion is compensated by 
the volume reduction. 
 Indeed during the solvent diffusion the volume of the nanocapsule decrease 
consequently the total density of the system remains constant.   

Simulation  
 According to the model developed above, a numerical algorithm model has been 
developed using FORTRAN.  
 
Input/output variables 
 
Input variables and parameters are shown in table.1 
 
 
 
 
 

Input  Values 
Variables 
            Initials Composition: 
            Solvent volume fraction inside the nanocapsule   
            phi10 
            Polymer volume Fraction inside the nanocapsule 

 
 

0.8 
 

0.1 
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            phi20 
            External solvent concentration (mol/m3) 
            Ct0 
            Geometrical parameters 
            Radius of droplet (m)    
            Rt0       

 
 

0 
 
 

2.10-6 
Parameters 
            Temperature (K) 
            Physical parameters 
            Diffusion coefficients (m2/s) 
            D12 

                  D13              
            D23 
            D31 
            D32 
            Mass transfer coefficient (m/s) 
            K1 
            Molar volume (m3/mol) 
            vm 
            Numbers of segments (-) 
            ns1 
            ns2 
            ns3 
            Thermodynamical parameters    
            Interactions parameters (-) 
            12χ  
            13χ  
            23χ  
            Geometrical parameters 
            Radius of nanocapsule environment (m) 
            Rext 
 

 
                   300 
 
 
                   10-10 

                   2 10-10 

                   (2.10-100)phi2

                   (2.10-100)phi2
 

                            10-10
 

                   10-16 

                            5.10-10 

 

                               97 
 

1 
714 
1 
 
 
0 
0 
0 
 
 
120.10-6 

1200.10-6 

 
 
We assume that the diffusion coefficient of polymer solvent (Fig 5) and polymer nonsolvent 
(Fig 6) are function as polymer volume fraction. So when the polymer solvent fraction 
increases, these coefficients decrease and tend towards zero. So the molar flux becomes 
null. 
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Fig 5 Evolution of polymer solvent diffusion coefficient 
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Oil polymer diffusient coefficient
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Fig 6 Evolution of polymer nonsolvent diffusion coefficient 

 
      
In the other hand we suppose that the solvent does not diffuse entirely towards the external 
phase.  
 
Out put variable 
 
Out put variables are polymer volume fraction, solvent volume fraction, nanocapsule radius 
and external solvent concentration. 
 
Simulation results 
 
Nanocapsule radius (Fig 7), and external solvent concentration (Fig 8) in response to input 
composition (table 1) were investigated through simulations. 
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Fig7 Evolution of solvent concentration outside the nanocapsule 

 



 14

Nanocapsule radius

0
0.2
0.4
0.6
0.8

1
1.2

0 500 1000 1500 2000 2500

Times (ms)
ra

di
us

 ( 
Rt

/R
T0

)
 

Fig 8 dimensionless radius evolution 
 
 

The solvent concentration in the external phase increases (Fig 7) and the 
nanocapsule size decreases (Fig 8). Furthermore polymer and oil volume fraction increase 
inside the nanocapsule. 
 

In this work we assume that the formation of polymer membrane may be explained 
exclusively by diffusion phenomena. The diffusion coefficients given in table 1 allow 
following result which is the increase of the polymer volume fraction at the interface.  

The diffusion coefficient of the polymer in the solvent decreases with the increase of 
the polymer volume fraction (relation given in table 1 and shown in figure 5). When this 
diffusion coefficient decreases and is nearly null, the polymer diffusion stops. The volume 
fraction being more important at the interface, we can observe the polymer accumulation. 

This phenomenon represents the sudden solidification of the polymer. Consequently 
the polymer remains at the nanocapsule interface and form a porous membrane around the 
oil. 

 
To show polymeric membrane formation at the nanocapsule interface, polymer and 

oil fractions evolution according to space at the beginning and the end of the process are 
represented on figures from 9 to 12. 
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             Fig  9 : Oil volume fraction a t=0                             Fig  10 : Polymer volume fraction a t=0  
        



 15

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0.05

0.1

0.15

0.2

0.25

0.3

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0.2

0.3

0.4

0.5

0.6

0.7

 
              Fig 11: Oil volume fraction at t=tfinal                   Fig 12: Polymer volume fraction at t=tfinal 
        
 

As shown in Fig 11 and Fig 12 the polymer volume fraction tends towards 1 at the 
interface of the nanocapsule and disappears from the center. At the same time the oil 
becomes more concentrated at the center and disappears from the interface. 
 

Conclusion 
 

A model of nanocapsule formation is developed in this article. This model is able to 
describe the polymeric membrane formation at the interface of the nanocapsule and takes 
into account the moving boundary induced by solvent extraction. The diffusion phenomena 
are described by Maxwell-Stefan equations. In the order to respect the global mass 
balance, the formalism of Fornasio is adopted and the Maxwell-Stefan equations are 
rewritten with this formalism. These equations are resolved with the finite volumes method. 
The phase separation is assumed only by the diffusion coefficients variation with the 
polymer volume fraction.  

The formalism of Fornasio allows the global mass balance conservation with molar 
volumes between species very different.  The diffusion coefficients variation with the 
polymer volume fraction allows describing the accumulation of the polymer at the interface 
but these equations are strongly non-linear and stiff. Their resolution is difficult and 
depends strongly on introduced parameters. 

In order to take into account the chemical potential real described by Flory-Huggins 
in this model with interaction parameters non null, the calculation of phase number  to 
equilibrium and phases composition will be coupled at the resolution of the presented 
model in this work. So the diffusion coefficients will be constant and the phase separation 
will be only assumed by the thermodynamic effect. 

 
 

References 
 
[1] B.F. Barton, P.D. Graham, A.J. McHugh, Dynamics of spinodal decomposition in 
polymer solutions near a glass transition, Macromolecules 31 (1998) 1672. 
 
[2] B.F. Barton, A.J. McHugh, Kinetics of thermally induced phase separation in ternary 
polymer solutions. I. Modeling of phase separation dynamics, J. Polym. Sci. Part B: Polym. 
Phys. 37 (1999) 1449. 
 



 16

[3] B.F. Barton, P.D. Graham, A.J. McHugh, Kinetics of thermally induced phase separation 
in ternary polymer solutions. II. Modeling of phase separation dynamics, J. Polym. Sci. Part 
B: Polym. Phys. 37 (1999) 1461. 
 
[4] C.S. Tsay, A.J. McHugh, Mass transfer modeling of asymmetric membrane formation by 
phase inversion, J. Polym. Sci. Part B: Polym. Phys. 28 (1990) 1327. 
 
[5] S.S. Shojaie, W.B. Krantz, A.R. Greenberg, Dense polymer film and membrane 
formation via the dry-cast process. Part I. Model development, J. Membr. Sci. 94 (1994) 
255. 
 
[6] S.S. Shojaie, W.B. Krantz, A.R. Greenberg, Dense polymer film and membrane 
formation via the dry-cast process. Part II. Model validation and morphological studies, J. 
Membr. Sci. 94 (1994) 281. 
 
[7] H. Matsuyama, M. Teramoto, T. Uesaka, Membrane formation and structure 
development by dry-cast process, J. Membr. Sci. 135 (1997) 271. 
 
[8] H. Matsuyama, M. Nishiguchi, Y. Kitamura, Phase separation mechanism during 
membrane formation by dry-cast process, J. Appl. Polym. Sci. 77 (2000) 776. 
 
[9] S.A. Altinkaya, B. Ozbas, Modeling of symmetric membrane formation by dry-casting 
method, J. Membr. Sci. 230 (2004) 71. 
 
[10] S.A. Altinkaya, H. Yenal, B. Ozbas, Membrane formation by dry-cast 
process: model validation through morphological studies, J. Membr. Sci. 249 (2005) 163. 
 
[11] C.S. Tsay, A.J. McHugh, Mass transfer dynamics of the evaporation step in membrane 
formation by phase inversion, J. Membr. Sci. 64 (1991) 81. 
 
[12] I. Pinnau, W.J. Koros, Influence of quench medium on the structures and gas 
permeation properties of polysulfone membranes made by wet and dry/wet phase 
inversion, J. Membr. Sci. 71 (1992) 81. 
 
[13] C.S. Tsay, A.J. McHugh, A rationale for structure formation during phase inversion, J. 
Polym. Sci. Part B: Polym. Phys. 30 (1992) 309. 
 
[14] H. Matsuyama, M. Teramoto, R. Nakatani, T. Maki, Membrane formation via phase 
separation induced by penetration of nonsolvent from vapor phase. I. Phase diagram and 
mass transfer process, J. Appl. Polym. Sci. 74 (1999) 159. 
 
[15] H. Matsuyama, M. Teramoto, R. Nakatani, T. Maki, Membrane formation via phase 
separation induced by penetration of nonsolvent from vapor phase. II. Membrane 
morphology, J. Appl. Polym. Sci. 74 (1999) 171. 
 
[16] H.C. Park, Y.P. Kim, H.Y. Kim, Y.S. Kang, Membrane formation by water vapor 
induced phase inversion, J. Membr. Sci. 156 (1999) 169. 
 
[17] H.J. Lee, B. Jung, Y.S. Kang, H. Lee, Phase separation of polymer solution by 
nonsolvent vapor, J. Membr. Sci. 245 (2004) 103. 
 



 17

[18] H. Caquineau, P. Menut, A. Deratani, C. Dupuy, Influence of the relative humidity on 
film formation by vapor induced phase separation, J. Polym. Eng. Sci. 43 (2003) 798. 
 
[19] W. Li, A.J. Ryan, I.K. Meier, Morphology development via reaction induced phase 
separation in flexible polyurethane foam, Macromolecules 35 (2002) 5034. 
 
[20] K. Matsuzaka, H. Jinnai, T. Koga, T. Hashimoto, Effect of oscillatory shear deformation 
on demixing processes of polymer blends, Macromolecules 30 (1997) 1146. 
 
[21]Y. Yip, A.J. McHugh Modeling and simulation of nonsolvent vapor-induced phase 
separation. Journal of Membrane Science 271 (2006) 163–176 
 
[22] Quintanar-Guerrero, E. Allémann, H. Fessi and E. Doelker, Pseudolatex preparation 
using a novel emulsion–diffusion process involving direct displacement of partially water-
miscible solvents by distillation, International Journal of Pharmaceutics, Volume 188, Issue 
2, 25 October 1999, Pages 155-164 
 
[23] R. Krishna  and J. A. Wesselingh. The Maxwell-Stefan approach to mass transfer. 
Chemical Engineering Science, Vol. 52, No. 6, pp. 861-911, 1997 
 
[24] Hoch, G.; Chauhan, A.; Radke, C. J. J. Permeability and diffusivity for water transport 
through hydrogel membranes   Membr. Sci. 2003, 214, 199-209. 
 
[25] Bausa, J.; Marquardt, W. AlChE J. 2001, 47, 1318-1332. 
 
[26] Paul, D. R. J. Membr. Sci. 2004, 241, 371-386. 
 
[27] Schaetzel, P.; Bendjama, Z.; Vauclair, C.; Nguyen, Q. T. J. Membr. Sci. 2001, 191, 95-
102. 
 
[28] Schaetzel, P.; Favre, E.; Auclair, B.; Nguyen, Q. T. Electrochim. Acta 1997, 42, 2475-
2483. 
 
[29] Zielinski, J. M.; Hanley, B. F. AIChE J. 1999, 45, 1-12. 
 
[30] Meyers, J. P.; Newman, J. J. Electrochem. Soc. 2002, 149, A718-A728. 
 
[31] F.Fornasiero, J. M. Prausnitz, C. J. Radke. Multicomponent Diffusion in Highly 
Asymmetric Systems. An Extended Maxwell-Stefan Model for Starkly Different-Sized, 
Segment-Accessible Chain Molecules. Macromolecules 2005, 38, 1364-1370 
 
[32] P. Flory, Principles of Polymer Chemistry, Cornell University Press, Ithaca, New York, 
1953. 
 
[33] E. Bruce Nauman, David Qiwei He. Nonlinear diffusion and phase separation. 
Chemical Engineering Science 56 (2001) 1999–2018 
 
 


