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Introduction 
 

 In this paper we consider multicomponent mass transport in porous media for non-dilute 

solutions, i.e., with full diffusion matrices. This process is described by coupled, nonlinear transport 

equations that must be spatially smoothed in order to be useful. This spatial smoothing is achieved by 

the method of volume averaging for the case of negligible adsorption, desorption, and heterogeneous 

reaction [1]. For pure diffusion, the results demonstrate that a single tortuosity tensor applies to the 

transport of all species, as heuristically done in the literature [2,3, …]. When convective transport is 

important, the process becomes much more complex. A generalized dispersion theory is proposed. The 

results show that the simplifications used in the literature may be introduced in the linear dispersion 

case only. 

 We provide below a summary of the findings. 

 

Theory 
 

 One starts with the pore-scale multicomponent mass balance equations given by 
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with the following boundary conditions at the liquid-solid interface 
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Using the method of volume averaging we obtain the following equation for species A 
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where the tildas refer to deviation to the intrinsic averaged values (noted with brackets). 

 

In order to obtain a closed form of the above equation, i.e., an equation without the deviation terms, we 

need to obtain a representation for the deviations. 

This is obtained by using the following algorithm (the development is rather lengthy, and details can be 

found in [1]): 

1. replace concentrations by averaged values and deviations in the pore-scale equations 
2. simplify the system of coupled equations (averaged and pore-scale) using the assumption of 

separation of scale, we obtain 
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3. This set of equations, called the closure problem, may be solved conveniently in the pseudo-

composition space obtained by transforming the system with the help of the nodal matrix [ ] 1
P

−
 

(see [4, ,…]), i.e. 
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4.   In the pseudo-composition space, we obtain the following mapping (in matrix form) 
 

[ ] [ [ ]w w γ
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where the components of [b] obey classical dispersion closure problems for the diagonal diffusion 

coefficients. 



 

5.   Returning back to the normal components, we obtain a set of generalized dispersion equations 
such as 
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Theoretical implications 

  

The closure problems may be solved in different cases. 

In the case of pure diffusion, we obtain the following macroscopic equations 
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where we have the important result that the effective diffusion matrix features a unique tortuosity 

tensor. 
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 In the case of linear dispersion regimes, we have in the pseudo-component space 
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for the longitudinal dispersion term. 

 When returning back to the original space, we obtain a set of dispersion equations, and the 

matrix of dispersion tensors has the important following property 
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 Contrary to heuristic proposals, it is important to recognize that this form is only valid for the 

linear dispersion regime, and cannot be used under other conditions. 

 

 

Validation by numerical experiments 
  

 In order to validate the theory, numerical experiments have been performed for a ternary system 

consisting of Aceton, Benzene, and CCl4. This system is interesting since it is fully non-linear. 

Density, viscosity, and diffusion coefficients vary significantly with the composition. 

 The pore-scale numerical experiments were performed on systems like the one presented in 

Figure 1. 

 

 
Figure 1. Pore-scale arrays of cylinders. 

 

 The pore-scale and averaged equations were solved using a special implementation in 

FEMLAB™, while the closure problems were solved using a proprietary finite volume code in order to 

obtain the tortuosity and dispersion tensors. 

 Typically, the pore-scale concentrations were averaged over each unit-cell and compared to the 

macroscopic predictions. It was found a very good agreement between the “numerical experiments” 

and theoretical predictions, as illustrated in Figure 2. In this figure, the circles and triangles refer to 

values averaged over the pore-scale numerical results. The lines referred to as “theor. nodisp” 

correspond to the averaged equations with only the tortuosity terms, while the others correspond to the 

full theory. 

 



 

0 0.5 1 1.5 2 2.5

x 10
-3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x (m)

M
as

s 
fr

ac
tio

n

t = 10.0 s 

intr. aver. veloc. 18.53 10-5 m/s

ωA (num.)

ωB (num.)

ωA (theor. nodisp)

ωB (theor. nodisp)

ωA (theor. + disp)

ωB (theor. + disp)

 
Figure 2.  Example of a comparison between numerical experiments and theoretical predictions. 

  

 

 

Conclusions 
 

 The proposed theory gives a generalized multicomponent dispersion theory. It shows that the 

heuristic effective dispersion tensors proposed in the literature are only valid under special 

circumstances, i.e., pure diffusion or linear dispersion regime.  Under general conditions, the theory 

may be used to build a generalized dispersion matrix from available experimental data, for complex 

multicomponent systems. 
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