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EXTENDED ABSTRACT 
 
 

A direct numerical simulation (DNS) of the instantaneous Navier-Stokes 
equation and the continuity equation provides a means to understand low 
Reynolds number turbulent flows of single-phase, Newtonian fluids in simple 
geometries. The ensemble average of these two equations yields the unclosed 
RANS-equation and the average continuity equation. Clearly, an appropriate 
closure model for the Reynolds stress is needed to support simulations of the 
RANS-equation for high Reynolds number flows in complex geometries.  

 
 Similarly, a DNS analysis of the instantaneous, phase-averaged, two-
fluid model (or its corresponding mixture model) provides a means to understand 
low Reynolds number turbulent flows of two or more interpenetrating Newtonian 
fluids. Individual realizations produced by these closed models provide a means 
to understand the behavior of defined mixture properties and to test various 
multiphase constitutive assumptions. The Reynolds average of the mixture model 
also yields a set of unclosed equations (RAM- model).   
 
 Application of the RANS-equation (or the RAM-model) to high Reynolds 
number flows requires an appropriate closure for the average flux of fluctuating 
momentum caused by the fluctuating velocity field. For single phase flows, a 
closure for u'u'< >  is needed; for multiphase flows, mix mixu' u'< >  is required. Both 
of these operators are non-negative and, thereby, have non-negative 
eigenvalues. Closure models that do not guarantee this feature for all turbulent 
flows are called unrealizable models.                    
  
 One of the most commonly used realizable closure models for the RAM-
equation is based on an ‘eddy viscosity” concept, which relates the Reynolds 
stress to the local mean strain rate, mixS< > , and the three non-trivial invariants of 

mixS< >  (see Shih et al., 1994, Koppula and Petty, 2005). The use of this idea for 
the mixture model gives the following algebraic closure for the kinematic 
turbulent momentum flux: 
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Unfortunately, this quisilinear model misrepresents the normal stress differences 
in fully developed pipe and channel flows as well as all other turbulent flow fields. 
More significant, however, is the observation that Eq.(1) is frame indifferent, 
which is inconsistent with the underlying physics of turbulent transport 
phenomena. The original idea of an “eddy viscosity”, albeit intuitively appealing, 
was used as early as 1877 by Boussinesq and afterwards by many others (see 
p.162, Bird et al., 2002; Pope, 1999) as a means to  account for the enhanced 
mixing of momentum in turbulent flows due to turbulent fluctuations.       
                      
 Parks et al. (1996) developed a preclosure for the Reynolds stress by 
using a smoothing approximation related to the space-time structure of 
turbulence. The preclosure equation links fluctuations in the instantaneous 
Reynolds stress to the Reynolds stress by using an operator that depends on the 
local mean field gradient and a time scale associated with the local space-time 
structure of turbulence. For multiphase flows governed by the mixture model, the 
Reynolds stress can be expressed as follows:   
 
   

mix mix mix mix< u' u' > = tr < u' u' > R                                                                          (2) 
 
 

 
T

T

A < f 'f '> A
R =

tr ( A < f 'f '> A )
⋅ ⋅

⋅ ⋅
.                                                                                     (3) 

 
 
In the above equation, the A-operator is defined as 
 
 

-1
mixcA = [ I + τ < u >]∇                                                                                            (4) 

 
*

c C mix mixτ = C k / .ε                                                                                                    (5) 
 
 
In a non-inertial frame, the A-operator depends on the angular velocity Ω  of the 
frame:  
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In Eq.(11), the velocity gradient is relative to the non-inertial frame and the 
rotational dyadic-valued operator is related to the angular velocity of the frame as 
follows  
 
 
Ω = ε ⋅Ω .                                                                                                          (12) 

 
 

*
CC  is a universal function of the local mixture Reynolds number. The turbulent 

kinetic energy mix mix mixk ( u' u' / 2 0)≡ < ⋅ > ≥  and the turbulent dissipation 
T

mix mix mix( ( u' ) : u'ε ≡ ν < ∇ ∇ > ≥ 0)  satisfy validated scalar-valued transport 
equations. The “prestress” < f 'f '>  is caused by fluctuations in the instantaneous 
Reynolds stress and pressure fluctuations.  
 
 If the “prestress” is isotropic, then < f 'f '> I∝ . For this situation, the 
normalized momentum flux is   
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It is noteworthy that Eq.(6) reduces to the B-closure (i.e., Eq.(1) above) for 

mixcτ < u > 1∇ .  However, Eq.(1) does not apply throughout the flow field.   
 
 The IPS-stress, defined by Eq.(6) above, is realizable for all turbulent 
flows and, most significantly, depends on the frame of rotation because the mean 
velocity gradient in not frame indifferent, as is the mean strain rate. This 
characteristic is consistent with the fundamental physical idea that the Reynolds 
stress, unlike the molecular stress, transports momentum by fluctuations 
influenced by Coriolis forces.  
     
 Both K  (see Eq.(6)) and R  are symmetric and non-negative operators. 
Therefore, the eigenvalues of these two operators are real, non-negative, and 
are restricted to the positive orthant of a hyperplane in a Euclidean three-
dimensional space wherein tr( K ) = 1 and tr( R ) = 1.  With the assumption that  
 
 



R (K=ℜ ) ,                                                                                                            (7)  
 
 
the Cayley-Hamilton theorem of linear algebra implies that  
 
  

2R K C (K K II K)= + ⋅ − K   .                                                                                   (8) 
 
 
The condition that the eigenvalues on the boundaries of the K-plane map onto 
the boundaries of the R-plane imply that for all turbulent flows (see Koppula et 
al., 2006),  
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In the above equation, KII tr(K K)≡ ⋅ .  An analysis of Eq. (8) shows that R  is a 
non-negative operator provided 
 
 

*0 ≤ α ≤ 21

5

.                                                                                                         (10) 
 
 
DNS results for fully-developed channel flows were used to determine the two 
closure coefficients introduced by Eq.(5) and Eq.(9). For y+ > 10,  

and .  

*
CC 0.6≅

* 9.0α ≅
 

For simple shear flows in non-inertial frames with an angular velocity co-
linear with the vorticity vector, the A-operator depends on two independent 
groups  and  that compare the turbulent time scale  with the time 
scales associated with the mixture shear rate and the angular velocity of the 
frame, respectively:  

SN NΩ mix mixk / ε
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The redistribution of energy caused by the coupling between the velocity 
gradient and the frame rotation operator with the turbulence is presently being 
assessed with DNS simulations. This comparison is a critical test for any 
algebraic closure. It is noteworthy that the classical B-closure (see Figure 1 and 
Eq.(1)) predicts that the frame rotation has no influence on the redistribution of 
turbulent energy, contrary to DNS simulations and experiments. The B-closure 
predicts that  for all values of  and xx yy zzR R R 1/= = = 3 SN NΩ  (see Figures 1 and 
Figures 2). This unphysical result does not support the use of Eq.(1) as a closure 
model for single phase or multiphase flows. However, the algebraic prestress 
(APS-) model defined by Eq.(8) above does show a redistribution of energy 
across the flow field that is qualitatively in agreement with experimental data as 
well as DNS simulations.  
 

As can be seen in Figure 2, the effect of frame rotation on homogeneous 
turbulence ( i.e., ) is to redistribute the turbulent energy to the component 
of the fluctuating velocity that is aligned in the same direction as the angular 
velocity. The energy is equally distributed between the other two components 
( ) for all values of 

SN = 0

yy zzR R= NΩ . For simple shear flows (i.e., ), the angular 
velocity is co-linear with the mean field vorticity. For  = + 5, Figure 2 shows 
that the distribution process is more complicated. The APS-closure predicts that 
all the turbulent energy is transferred to the vorticity direction as   (see 
Figure 2).   

SN > 0

SN

NΩ → ± ∞
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Figure 1.  APS theory prediction of the variation of the components of R with the mean 
strain rate for simple shear flows ( ; ; ;  xxR yyR zzR yzR− ). 
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Figure 2.  The effect of fame rotation ( NΩ ) on the partition of turbulent energy for 
homogeneous turbulence (  SN 0= ) and for homogeneous simple shear (O 

). SN 5=


