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Introduction

Amyloidosis results from abnormal aggregation dfueaor proteolyzed proteins into amyloid
fibrils [1] and is associated with an array of niiés, including Alzheimer’s Disease,
Parkinson’s Disease, spongiform encephalopathips, It diabetes and several forms of
systemic amyloidosis [2, 3]. In each case, a praiea proteolyzed fragment aggregates to
form unbranched fibrils 10-20 nm wide and hundreidsm long [4]. Fiber diffraction and
electron microscopy data support a crpdelical structure in the fibrils, with the mainash of
[-strands running perpendicular to the axis of therf[5]. The diversity of the proteins
implicated in amyloid diseases [6] and the struadtammilarity of the resulting amyloid fibers
suggest that the formation of amyloid fibrils isegult of general chemical properties of the
polypeptide backbone and amino acid side chaiherahan the precise amino acid sequence [7,
8]. Thus, itis of interest to explore how changesnvironment confer structural changes that
predispose proteins to self-associate and ultimé&bem amyloids.

While the formation of amyloid fibrils is observéatr proteins of differing folds, including-
helix proteins [9-11]B-sandwiches [12]a+[ proteins [13, 14], the presence of edge strands
makeg3-sheet proteins particularly susceptible to aggrega Human3-2 microglobulin ¢,M),
a 99-residugd-sandwich protein, is an integral part of the MHEmplex, human leukocyte
antigen (HLA), and has been studied as a modetsy&ir understanding amyloidosis [15-21].
The protein is routinely secreted into the bloagdain as part of its catabolic cycle. Most
patients undergoing hemodialysis eventually develiafysis-related amyloidosis due to an
accumulation of;M in the serum [22]. The monomeric structure @& pinotein has been
determined using both X-ray crystallography [23 &MR [24]. These crystallographiAVix-
ray and solution§;Mnmr) structures are highly similar, and both consigteven( strands (A-
G) grouped in two antiparall@-sheets (Fig. 1). There are also several diffexstetween the
two structures. Most notably, B3Myur One of the edge strands (strand D) has a prondunce
bulge, whereas the corresponding stranBbMx.ray does not contain the bulge. Similarly, the



crystal structure gB,M in complex with the HLA heavy chaifdfMy.») [25] shows a bulge in
strand D involving D53 and L54. Thus strand 3g¥l is capable of adopting more than one
stable conformation.

The edge strands offasheet often exhibit structural features desigoearotect against further
[B-sheet interactions, such @sbulges, prolines, charged residues, short edgaddrand loop
coverage [26]. As a result the native conformatiofien must first be destabilized through
mutation [27, 28] or exposure to environmentalsstid 9] in order fof-sheet proteins to
become amyloidic. This is consistent with the obston that most proteins require partial
denaturation to become amyloidic [19, 29-36]. Bemwmical and spectroscopic studies have
suggested that the D strand3aM may be directly involved in amyloid formation [157-39].
Trinh et al. proposed that the conformation witktraight edge of the D strand may correspond
to a rare species trapped by crystallization [Z3jice the loss of the bulge in strand D would
likely predispose the protein to aggregation thioitg exposed edge strand, it is important to
understand what factors contribute to its lossg@iue rise to alternative, potentially aggregation-
prone conformations.

Although thein vivo mechanism of amyloid formation frof@aM is not known, the protein may
be coaxed to form amyloids vitro by reducing the pH of the solution to pH = 3.6 [48] or by
adding C@" ion to the buffer [41, 42]. The structure of MOTEYic B2Mx ray, With its straight
edge strand, was determined at pH = 5.7 [23], wthé¢ of 3,Mnur Was determined at pH = 6.6
[24]. Given the amyloid forming properties at Ipi and the straight strand observeii x.

rRay It iS Of interest to probe how the local struetof thep-strand bulge varies with pH. A
number of simulation studies have provided moleanlsight on amyloid forming proteins [43-
47]. In the present study, molecular dynamics stmn was used to investigate how the
conformational properties M may be modulated by pH. To examine the strutte@sponse
of B,M to pH, we performed a series of simulations usliffgrent ionization states of its side
chains His, Asp and Glu, and the C-terminus. Stidrsdiopts a bulged conformation when only
His side chains are protonated (here referred tomadgium pH”), but takes on a straight edge
conformation when all three types of residue acqurated (“low pH”). Since B-strand bulge
may be an important deterrent against nonspedifiommerization, the pH dependent edge strand
rearrangement seen in the simulatiofssl may suggest a mechanism by which low pH
predisposes the protein for amyloid formation.

Figure Captions

Figure 1

Two crystal structures @M. (Left) B.Muy.a corresponds to the structure®M in the HLA
complex determined to 1.8 A resolution (PDB: 1DUZRight) B2Mx.ray Was determined as a
monomer, also to 1.8 A (PDB: 1LDS).



Figure 2
The rms deviation of main chain atoms at the en@ld simulations started from eith2Mx.

Ray (—®—) Or B2Muia (- - O- -). Bars indicate secondary structurdix.ray corresponding to
the strands A, B, C, C’, D (black), E, F and G.

Figure 3

B2Mx-ray Was simulated at medium pH with 100 mM NaCl anapsiots were obtained at
different time points: (i) 38 ps, (ii) 638 ps, Jid50 ps, (iv) 1.55 ns, (v) 2.48 ns, (vi) 3.0 ns.

Figure 4
A detailed view of frame (vi) from Figure 3, illuating the bulge in strand D.

Figure 5

Two 6 ns simulations were performed with the intednate conformatio(?oni (middle)
corresponding to frame (iii) of Figure 3. The slatad pH values were set to either low by
protonating Asp, Glu and His, or medium by protamatis only. (Left) The structure obtained
after 6 ns at low pH was superimposed with the &&nof Figure 3 (two trajectories). (Right)
The structure obtained after 6 ns at medium pHsugerimposed witBMya.

Figure 6

The side chain of H51 can form a H-bond with tlieesihain of D53, forcing the two residues on
the same side of[&strand and constraining the geometry of the baa&l{teft); or with the

main chain carbonyl of S52, thus allowing D53 ttate toward the solvent (right).
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