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I ntroduction

Batch manufacturing processes are common in chemica, pharmaceuticd, bio-technical and
semiconductors indugtries. After charging the equipment with raw materids, the operation is initiated and, the
observation of the first point is obtained. This corresponds to a vector of dimenson J. The evolution of the
batch is then registered measuring the same J variables a timeintervas 2, 3,..., until K, when the operationis
finished. Hence the information of | batch runs can be grouped in a three way data matrix X
(batchxvariablesxtime).

Multivariate Statistical Process Control has been successfully gpplied for the monitoring and diagnostic
of batch process during the last decade (Nomikos and Mc Gregor (1994, 1995), Wold et al. (1998)). These
gpplications are based on Multiway Principad Component Analysis (MPCA) and Multiway Partid Least
Square (MPLYS) strategies proposed by Wold et al. (1987).

The unfolding method of the three-way data métrix X (batchxvariablextime) plays an important rolein
the required effort to develop the control charts, to process data on line during monitoring and to identify the
source of faults. Generdly X is unfolded into a large two dimendond matrix X, such thet, each vertical time-
dide of X is put sde by sde to the right in X, starting with the dide corresponding to the first time interval.
Another arrangement has been also proposed by Wold et al. (1998) that consst in putting each vertica time-
dideof X under the previous ane.

In the first unfolding strategy the whole batch is consdered as one object. Thus each batch can be
compared against a group of good batches to determine if it is a good batch or not. Since the mean
trgectories of al process variables are removed, and consequently the main nonlinear and dynamic
component of the data are not present any more, a PCA alows to sudy the systematic variation of variable
trgjectories about their mean trgjectories.

In contrast, the approach developed by Wold et al. (1998) for the vertical unfolding only removes the
grand mean of the variables for dl batches and times, leaving the non-linear time-varying trgectories in the
data. To avoid the capture of the deterministic behaviour of the process by the firgt principal components, Y oo
et al. (2004) uses the verticad unfolding after centering and scaing the horizonta matrix X. In this way the
information regarding process variability for each time is maintained.



This work presents a comparative of andyss of performance between PCA techniques based on the
horizontal unfolding and the vertica unfolding proposed by Yoo et al. (2004) for the modeling, ontline
monitoring and fault identification stages. The dudy is caried out for a methyl-methacrylate emulson
polymerization reactor.

Multiway Principal Component Analysis. Horizontal Unfolding

Let usfirst congder the unfolding of the three-way datamatrix X (1xJxK) asitisshownin Fg. 1A. A
matrix X, of dimenson ( x KJ) results that, prior to obtain an empiricd model based on PCA, is mean
centered and scaed forming matrix Z,. The subtraction of the mean trgjectories of each variable removesthe
main nonlinear and dynamic components of the data, adlowing to andyze the common cause varidions in the
time trgectories of dl variables with respect to their mean trgectories. The scaling of variables to unit variance
givesequa weight to dl varigbles at each timeinterval.

Modding

The matrix Z, is decomposed into a summation of R products of score vectors t, and loading vectors
pr, Plusaresdud matrix E; which isas smal as possible in the least square sense
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When the variagbles are highly corrdated, afew principa components (P.C.) are used to express most of the
variability of the data reveding smilarities and differences among batches. Different criteria are established to
determine the number of P.C. needed to represent the data in the latent variable space, for example, see the
contributions by Jackson (1991), Namikos and MacGregor (1995), etc.

Given a st of industrid data corresponding to | batches, firgt it is necessary to obtain a reference
digtribution againgt which future runs can be compared. This reference didribution should only include dl
batches that are subject to a common cause variation. If some batches from the original set revea problematic
operations or unacceptable products, that should be detected and darm in the future, they are excluded from
the origina data set. To perform this sdection the Hotdlling D? and Q statistic are caculated for each batch. A
run is taken out from the reference population if one or both satistic vaues are greater than the critical ones
(Nomikos and MacGregor (1995)). The procedure is repeated until al runs described the norma batch
operation. A population of only 1" batches results and the PCA model is composed of the matrices T,, P,
and E, corresponding to the last post-analysis of batches. For the sake of simplicity, the reference population
isconsdered congtituted by | norma batchesin the rest of thiswork.

The D? gatistic measures the Mahalanobis distance of each batch with respect to the mean trgectory.
Assuming the varigbles in matrix Z, follow a multinormal distribution with zero mean vector and convariance



matrix R ,, thet scores of dl principa components &so follow a multinormal distribution with zero mean vector
and covariance matrix S, which is diagond due to the orthogondity of the scores. The D? gatigtic for each
batch is caculated as follows
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where tg isthe vector containing the coordinates of the batch in the reduce space formed by the R retained
P.C. and, S; isthe corresponding (RxR) diagond covariance matrix. The satistic follows a Beta distribution
Briz-r1y2a Which can be gpproximated as

R

BR/Z,(I- R-1)/2a @ R (3)

TR R

where Fy, (. , iSthe corresponding value of the F distribution for acertain level of significancea .

The Q dtatistic measures the representation error of the mode defined in the subspace formed by the R
latent variables and, it is calculated as the square prediction error (SPE)

Q=e'e (4)

Thecriticd vauefor Q is
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where z, is the norma deviate cutting of an areaof a under the upper tail of the distribution if h, is postive
and, under the lower tail if h, is negetive. Also | ; stands for thej-th eigenvalue of matrix Z,.

Also the modding stage comprises the procedure to define the control charts for the square prediction
error satidtic at time k (SPE,), thet is explained in the following section because it is related with the strategy
selected for ortline monitoring.

On-LineMonitoring

The ontline monitoring of new batches is performed cdculating the D? and SPE satistics for each k
time. The firg satidtic is evduated as follows
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where t ., is the score vector for the observations avallable up to the k-th time period of the batch under
andyssin the R latent space of variables, f, stands for the mean vaue of the same score vector in the
reference population and, S, represents the covariance matrix of these vectors
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The square quadratic error for the k-th observation is
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where e*" isthe model representation error vector defined as follows
9)
and
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To caculate ¢, a vector of complete standardized measurements zlﬁa”of dimenson (1XJ) should be

available but, a time k only the firg KJ columns are known, thus the remaining (K-k)J measurements are
estimated using different techniques (Nomikos and MacGregor, (1995)).

The parameters m and v, are the mean and variance of SPE, , which are obtained during the model
gage. Each normd run of the reference didribution is passed through a procedure to estimate future
observations and, K groups of | batches containing JK variables are formed (Box et al. (1978)). These data
are projected into the space of the latent variables and the parameters m, and v, are calculated asfollows
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where ; , stands for the representation error of batch i for thetimeinterva k.



Fault I dentification
Once a special event has been detected, it is important to diagnose its cause. For example, the
contribution of each measured variable to both statistics can be displayed ontline to diagnose the cause of an

abnorma operation. These contributions to the D? and SPE datistics are calculated using Eq. (12) and Eq.
(13) respectivey (Westerhuis et al., 2000)
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Fig. 1: Horizontal (A) and Vertical (B) Unfolding of the Three-Way Data Matrix X



Multiway Principal Component Analysis. Vertical Unfolding

Let us congder the unfolding of matrix X (I1xJxK) asitisshownin Fg. 1B. A matrix X, of dimension
(1, KxJ) results. If X, is centered (Wold et al. (1998)), only the grand mean of the variables for dl batches
and times are removed, leaving the non-linear time-varying trgectories in the data. In order to only maintain
the information regarding process variability for each time, Yoo et al. (2004) used the vertica unfolding after
centering and scaling the horizontal matrix X ;. Thus a PCA is undertaken on matrix Z,(IKxJ). It should be
noticed that matrix X; is obtained after performing a post-andysis of the origina run data to discard those that
are not congdered normd. This selection can only be done using the horizontal unfolding.

Modeling

The matrix Z, is decomposed into a summation of R, products of score vectors t, and loading vectors
p, plusaresdud matrix E,

t.pl +E,=T,P] +E, (13)
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These métrices have the following dimensons T,(IKXR,), P,(IX Ry) and E,(IKxJ).

The verticd unfolding dlows a direct projection of the J observations for each interva k into the space
of latent variables. Consequently no inference about future measurements is necessary to define the SPE
control charts. The externd reference distribution is based on the information contained in E,.The statistic
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e () standsfor the representation error of variablec for batch i a timek.

On-LineMonitoring

A vector of observations z)* is sraightforwardly projected into de latent variable space and, the
satistics D and SPE, are caculated. The vectors of scores and model prediction error for timek are

te =2z, P, (15

e =z, - t}*'P; (16)
The SPE, datigtic for the new observation is
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Fault Identification

If the process is out of control, an identification stage of the fault source continues. For the vertica
unfolding the contribution of each measurement to the atistics can dso be caculated as in Westerhuis et al.
(2000). Furthermore a graphic technique, the Biplots, can be gpplied because only J variables are taken into
account and not (KxJ) variables, as it is the case for the horizontd unfolding. The use of biplots enhances
sgnificantly the identification procedure. Although MPCA has been widdy gpplied for monitoring batch
processes, the use of accompanying biplots has not received similar attention.

L et us consder the following decomposition for matrix Z,
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where G=UGY? and H=VGY2. Matrices U, Gand V come from the singular value decomposition of Z, as
Z,=U G V. Furthermore the eigenvaue (L )and eigenvector (P,) matricesof 7, arerdated with U, G and
asfollows G=1/(IK-1)L Y2, v=P,, U=1/(1-1)TL "¥?2The projection of the i-th row of G on the j-th column
of H represents z,;;.

The biplot was introduced by Gabrid (1971) as a graphica display. Because the row and column
vectors (g, h;) areof dimension J, only 2 or 3 components are represented in the plane or space.

Results and Discussion

A nontisothermd semi-batch reactor modd for methyl-methacrylate emulson polymerization is
developed (Alvarez et al., 2006). The modd includes the following equations. @ mass baances for initiator,
aurfactant, monomer, and radicad and polymer molecules; b) population baances, c) energy bdance; d)
expressons to caculae: the average radical number per particle, radica entry into the particles, radical entry
into micdles, radical desorption from particles, monomer converson, monomer concentration in particles,
monomer concentration in the aqueous phase, particle growth rate, tota reactor volume, etc. The modd aso
includes molecular weight calculations. g°PROMS code environment (Process System Enterprise, Ltd.) is
employed for modeling this process. Simulation results are vaidated usng experimenta data provided in the
literature.



A reference norma data-base composed by 61 batches is obtained by smulation. It is assumed that
eight measurements (molecular weight MW, monomer inlet flowrate QO, surfactant concentration in agueous
phase SW, reactor temperature T, reactor-jacket temperature TREF, refrigerant inlent temperature TREFO,
volume VR and converson X) are sampled every 2 minutes for an 80 minutes run. These data were used to
formulate the MPCA models that characterize the normal operation and to develop the control charts for each
unfolding Strategy.

Furthermore four operationd faults are smulated: 1) an increment of monomer concentration after k=6
until the end of the batch (MB4), 2) an increment of the inlet flowrate of monomer, from k=8 until the end of
the run (MB5), 3) a decrease of the monomer inlet flowrate between k=10 and k=21 (MB6), 4) a decrease
of the refrigerant flowrate between k=4 and k=13 (MB?7).

The percentage of totd and individud variance recongtruction is shown in Fg. 2 for the horizontal and
vertical unfoldings. Four P.C. are retained to get a 80% of tota variance reconstruction in both cases.
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Fig. 2: Percentage of variable recongtruction

Regarding the horizonta unfolding, in Fig. 3 the time evolution of the vaues for the Satistics D? and
SPE and their corresponding limits are shown for each batch. The SPE satistic detects al the faults with some
delay for Batch MB4 and MB7, but the D? satigtic only reveds the faults of Batch MB5 and MB6. For these
two runs, the variable contribution plots to the D? datistic represented in Fig. 4 identify the right fault source.

Figure 5 shows the contributions of each measurement to the SPE datistic when the horizontal
unfolding is considered. For Batch MB4, the fault occurs for an unmeeasured variable, thus thereisno aclear
digtinction of the fault source. The highest contribution corresponds to the aqueous concentration of surfactant
that isin agreement with an increment of the inlet concentration of monomer. For Batches MB5 and MB6, the
changes of the inlet flowrate of monomer are identified correctly. With respect to Batch MB7, the reduction of
the unmeasured refrigerant flowrate is associated with the reactor temperature and conversion.
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Regarding the vertica unfolding, Fig. 6 represents the time evolution of the vaues of statistics D? and
SPE and their corresponding limits for each batch. For this unfolding, both satistics detect dl faults. For Batch
MB4, D? produces an darm with a delay greater than SPE does, which detects the fault faster than the same
datigtic for horizonta unfolding. For Batch MB5 and MB6, the detection capabilities of both Strategies are the
same. For Batch MB7, modeling techniques have the same detection performance as the one shown for Batch
MB4.

The contribution of each measurement to the satistic valuesis shown in Fig. 7 for the vertical unfolding
technique. For Batch M B4, the fault occurs for an unmeasured varigble. There is no a clear digtinction of the
fault source considering the contributions to D?, but only the contributions of surfactant concentration and
converson ae the highes for the SPE datidic, which is in agreement with an increment of the inlet
concentration of monomer. For Batch MB5 and MB6, both types of unfolding provide the same identification
using the contributions to D? datistic, but a clear digtinction is not provide when the contributions to SPE are
andyzed. For Batch MBY7, the contributions to SPE datidtic caculated with the verticd unfolding alow
identifying that the fault is associated with the refrigerant, because the greatest contributions correspond to
reactor temperature and reactor -jacket temperature.

Figure 8 represents the fraction of recongtruction of each measurement when they are represented in
different score planes that come from the verticd unfolding modd. A recongtruction fraction equa or grater
than 0.5 is consdered satisfactory. This information is applied to analyze the corresponding biplots, which are
shown in Fig. 9. In these pictures the dlipses for a =0.01 are plotted. For two cases, the dlipsefora=0.05is
aso included.

The information provided by the contribution plots (Fig. 7) regarding the fault source is enhanced with
the analyss of biplots. They contain a point that represents the batch in the plane defined by two scores and
one arrow for each variable. The heavy arrows correspond to variables with a high fraction of reconstruction
in the plane. For Batch MB5, both the volume and inlet monomer flowrate may be considered as suspicious
faults when the plane t,-t, is andyzed, nevertheless the ingpection of plane t,-t, confirms thet the faullt is due to
QO. For Batch MB6, the same conclusion arises from the andyss of the batch projections on the arrows
corresponding to QO and VR. For Batch MB?7, the three biplots indicate the faults correspond to the reactor
and reactor-jacket temperatures, that are associated with the refrigerant flowrate, which is the variable out of
control.
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Conclusions

In this work a comparative study of the performance of the MPCA drategy for batch monitoring is
performed congdering two different techniques for the unfolding of the three-way array data matrix. The
classc horizontd unfolding and the verticd unfolding of the mean centered and scded horizonta metrix are
dudied, usng smulated data of a methyl-methacrylate emulson polymerization reactor. The andyss
comprises the off-line modeling phase, and the on-line detection and identification phases.

The moddling phase involves the devdopment of the empiricd PCA modd and the control charts.
Given a st of indudtria data, only the horizontal unfolding can be gpplied to determine a set of norma batches
that behaves as a reference population. These data are then used to obtain different PCA empiricad modes
depending on the sdlected unfolding strategy. The formulation of control charts for the SPE datistic requiresa
greater computation effort for the horizonta unfolding because estimates of future observations are necessary.

During the on-line detection phase, it is also needed to predict future observations for the horizontal
unfolding. If these estimations are not sufficiently right, detection and identification faults may arise as in the
provided examples. Furthermore, the vertica unfolding dlows the use of biplots, a graphica tool that
sgnificantly enhances the identification of fault sources. Biplots can not be used with identification purposes for
batch processesiif the horizonta unfolding is applied.
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