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1. Introduction 
 
For a four-component feed, Kaibel (1987) proposed a single dividing wall column 
(DWC) with two side-streams. We will show that an analytic minimal energy 
expression for the Kaibel-arrangement is straightforward to deduce based on the 
methods presented by Halvorsen (2001).  The expression is very similar to the 
expression for the 3-product Petlyuk column. Minimum energy for the generalized n-
product Petlyuk arrangement is given in Halvorsen (2001), Halvorsen and Skogestad 
(2003).  Halvorsen introduced the Vmin-diagram, and this tool is also suited to 
illustrate the performance of a Kaibel column.  
 
Compared to the conventional 3 column direct split sequence, the Kaibel column can 
be built in a single shell, making it very interesting in terms of capital cost savings. In 
addition it performs quite well in terms of energy savings too. As an example, the 
potential energy savings are 33% compared to the direct sequence for an equimolar 4-
component mixture with relative volatilities of 6:4:2:1.  
 
We will show how the methods can be used to compare a number feeds for a set of 
alternative arrangements. The feed may contain any number of components that are 
split into four products with both sharp and non-sharp splits between each product.  

 
 

Figure 1 The Four Product Kaibel Arrangement 
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2. Minimum energy expression 
 
We consider a 4-component feed (F) with the components A (light), B, C and D 
(heavy). The feed with composition vector z and liquid fraction q shall be separated 
into 4 pure products. We assume infinite number of stages, constant pressure, constant 
molar flow and constant relative volatilities (α ) referred to a reference component 
(typically the heavy D). Thus DCBA αααα >>>  
 
The objective of this study to obtain the minimum vapour flow requirements for the 
Kaibel-arrangement as shown in Figure 1. The prefractionator (C1) performs a sharp 
AB/CD split. The succeeding “main column” performs the A/B-split in the top (C21) 
and the C/D-split in the bottom (C22). The middle section (C2x) between the B and C 
outlet is actually operated at full reflux (V=L) without any net transport of 
components since the B/C split is already obtained in the prefractionator. The 
minimum vapour flow requirement in the main column is given by the highest 
requirement from the A/B or the C/D-split. 

 
Figure 2. The Petlyuk Arrangement extended to four products. 

 
Before deriving the overall minimum vapour flow for the Kaibel column let us 
consider the extended Petlyuk arrangement shown in Figure 2. Here, the minimum 
energy is given by the requirement to perform the most difficult of the three splits:  
A/BCD, AB/CD or ABC/D as if that split should be performed in a single column 
(Halvorsen 2001). This requires that every internal column in the arrangement is 
operated at its preferred split (Stichlmair 1989). 
 
However, in the Kaibel-arrangement the prefractionator is not operated at the 
preferred split, but performs a sharp AB/CD split. The minimum vapour flow rate 
(Vmin) at the top of the prefractionator is then higher and can be expressed analytically 
by the Underwood (1948) expression: 
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Here Bθ is the middle common Underwood (1948) root found from the feed equation: 
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The common Underwood roots obey: DCCBBAA αθαθαθα >>>>>>  
 
Note that when the prefractionator is operated at minimum energy for AB/CD split, 
the middle root ( Bθ ) is the only active root. To find the actual Underwood root in the 
top and in the bottom sections we must return to the defining Underwood equation 
(e.g., Halvorsen 2001). In the top, only component A and B occur, thus 
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In the bottom, we have similarly only component C and D travelling downwards: 
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The interesting roots are Aφ  in the top and Cψ  in the bottom. (Note that 

BAAA αθφα >>>  and DCCC αψθα >>> .) Due to the full thermal coupling these 
roots carry over from the prefractionator (C1) and become the common Underwood 
roots in columns C21 and C22 respectively as shown by Halvorsen (2001). 
 
Thus, the minimum vapour flow rate in the top of the Kaibel column (C21) is given 
by: 
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Similarly, in the bottom of C22: 
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Thus, the overall minimum vapour flow for the Kaibel arrangement in terms of the 
overhead vapour flow is (for simplicity we use D as reference and thereby: 1=Dα ): 
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The calculations are simple and exact for infinite number of stages. With the 
assumption of constant relative volatilities and constant molar flows, the solution for 
the Underwood roots requires a polynomial root solver, but the rest are simple rational 
expressions. No iterations are required. 
 
The minimum vapour flow for the Kaibel arrangement can never come down to the 
minimum energy for the extended four-product Petlyuk column. This is because the 
prefractionator is operated above the preferred split, and that introduces an 
irreversible loss that cannot be recovered in the succeeding columns. 
 

3. Numerical Example 
 
In Table 1 six different arrangements are compared. There are many more 
combinations possible. The Petlyuk- and the Kaibel arrangements have the 
prefractionator ends fully thermally coupled to the succeeding columns. Vmin is given 
in molar flow rate and in per cent referred to the conventional direct split sequence. 
 
 Configuration Vmin 

 
Savings First column/ 

prefractionatior 
Second 
separation 

Third 
separation 

1 Four product 
extended Petlyuk 

1.38 
 

50% C1:ABC/BCD C21:AB/BC 
C22:BC/CD 

C31:A/B 
C32:B/C 
C33:C/D 

2 Kaibel column 1.83 
 

33% C1:AB/CD C21:A/B 
C2x:B/C 
C22:C/D 

 

3 Three product 
Petlyuk+ 
conventional  B/C  

1.98 28% C1: A/BC/D C2: B/C  

4 Prefractionator+ 
single main column 

2.34 
 

15% As Kaibel, but 
with condenser 
&reboiler in 
prefractionator  

C21:A/B 
C2x:B/C 
C22:C/D 

 

5 Prefractionator+ 
2 separate columns 

3.04 
 

-11% 
(loss) 

As Kaibel, but 
with condenser 
&reboiler  

C21:A/B 
Isolated 
from 
C22:C/D 

 

6 Conventional direct 
sequence (3 columns) 

2.75 
 

0% 
(reference) 

C1:A/BCD C2:B/CD C3:C/D 

7 Conventional indirect 
sequence with liquid 
overhead (3 columns) 

3.50 
 

 

-27% 
(loss) 

C1:ABC/D C2:AB/C C3:A/B 

Table 1 Comparison of minimum energy for 4-product separation sequences.   
Feed data: F=1, α=[6 4 2 1], z=[0.3 0.2 0.2 0.3], q=1. 

 
Observe that the Kaibel-arrangement consumes more energy than the full extended 
Petlyuk arrangement, but also that it performs better than the other more conventional 
arrangements (4-7) that do not use full thermal coupling. It also performs better than a 
combination of a 3-product Petlyuk column combined with a conventional binary 
column for the last split (3). 



  
 

 

 

4. The Vmin-diagram 
 
The solution is simple to illustrate in the Vmin –diagram in Figure 3. Recall from the 
work of Halvorsen and Skogestad (2003) that the peaks PAB, PBC and PCD represent 
minimum energy for sharp product splits of the original mixture. Each peak is related 
to each of the common Underwood roots ( CBA θθθ ,, ).  The highest peak (here PAB) 
represents the minimum energy for the Petlyuk arrangement. For a Petlyuk 
arrangement, the prefractionator performs the “easy” split between components A and 
D, and the remining components are split such that we operate at the preferred split, 
which is at PAD. However, in a Kaibel-arrangement the prefractionator performs the 
more difficult split between components B and C. For the Kaibel column we must 
compute  the new peaks P'AB and P'CD that are determined by the actual Underwood 
roots ( CA ψφ , ), see equations (5) and (6). The minimum energy in the Kaibel 
arrangement is given by the highest of the new peaks (here P'AB). It is obvious from 
this diagram that the Kaibel arrangement always consumes more energy than the full 
Petlyuk arrangement since P'AB > PAB, P'CD > PCD and trivially: P'AB > PBC and P'CD > 
PBC. It is also simple to see that the difference between Kaibel- and Petlyuk-
arrangements can become small when peak PBC is quite low. This is illustrated by the 
additional results in Figure 4. 
 

 
Figure 3 Vmin diagram for the four component feed 

 
To get a rough approximation of P'AB and P'CD, just consider the two lines PADPAB and 
PADPCD and the corresponding two parallels through PBC and se how these parallels 
intersects the verticals straight above PAB and PCD. (This is not shown in the figure.)   



  
 

 

Thus, the Vmin –diagram, based only on the feed data, can give a good picture of the 
performance of the Kaibel column even without doing the detailed calculation.  
 
The left and right peaks represent the minimum vapour flow in the upper an lower 
part of the Kaibel column respectively. The highest peak determine the energy 
demand. 

5. Additional examples 
 
In Figure 4 a set of Vmin-diagrams is shown where the feed properties is varied from 
the basic example given in Figure 3. (α=[6 4 2 1], z=[0.3 0.2 0.2 0.3], q=1) 

 

Figure 4 Vmin-diagram for different feed properties. The peaks representing the 
Kaibel column are shown dashed.  The dashed horisontal line above each 
diagram represents the vapour flow in the best conventional configuration.   
 
 



  
 

 

Note that the peaks representing the Kaibel arrangement (dashed) are always above 
the ones representing the full 4-product Petlyuk arrangement (solid). However, the 
Kaibel arrangement also has significantly lower vapour flow than a conventional 
arrangement (the dashed horizontal line) for all the examples. 
 
The peak PBC is small if the relative volatility between B and C is smaller than the 
ones between A/B and C/D, an also if the feed fraction of B+C is small compared to 
A and D. 
 
Note that in case a) when the B/C split is simple (compared to A/B and C/D) and in 
case e) where the amount of B and C in the feed is small, the Kaibel column comes 
very close in performance to the full 4-product Petlyuk arrangement.  
 
In case b), c) and d) where the peaks are very different, this will give a corresponding 
large difference in vapour flow in the upper and lower part of a Kaibel column. Thus, 
another arrangement may be more practical in those cases.  
 

6. Conclusion 
 
It is shown that it is straightforward to find the analytic expression for minimum 
energy of the Kaibel-arrangement based on the calculation methods for the 
generalized Petlyuk arrangement. These are again based on the classical Underwood 
equations. 
 
The result is simple to illustrate in the Vmin-diagram. From the basic Vmin-diagram 
based on the four-component feed, it is easy to assess the vapour requirement in a 
Kaibel column without doing the detailed calculation. 
 
The energy savings by a Kaibel column can be over 30%. It is also attractive for 
capital cost savings compared to conventional 3-column arrangements since these can 
be replaced with a single shell and a single re-boiler and condenser. A full Petlyuk 
arrangement for four components will always save some more energy, but will not be 
very realistic to use in a real plant due to much higher complexity.   
 
It is straightforward to use this analysis for more than four feed components, with 
both sharp and non-sharp purity specifications for the four products.  
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8. Appendix – The Underwood roots 
 
The actual Underwood roots (φ ) in the top section (subscript T) of a two-product 
distillation column with a N-component feed are defined as the solution of: 
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Similarly, the Underwood roots (ψ ) in the bottom (subscript B) is defined as the 
solution of: 
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By subtracting these two equations we obtain the feed equation: 
 
 FqVV BT )1( −=−        (A3) 
 
Here wi is the net transport rate of component i in the upwards direction. V is the 
vapour flow rate and iα  is the relative volatility referred to a reference component 
(usually the heavy key). 
 
Underwood showed that for minimum energy operation corresponding roots in the top 
and bottom coincide. Thus, these common roots (θ ) can be found directly from the 
feed equation. For N components there are N-1 common roots with values between 
the relative volatilities. 
 
In any operating point of the column, we denote a common root as an active root 
when the actual roots have coincided to the actual roots ( iii ψθφ == ).  This occurs 
when there are any components that are distributed to both products. With reference 
to the Vmin-diagram for the four-component example in Figure 4, Aθ  is active in 
region AB, ABC and ABCD. The root Bθ  is active in region BC, ABC, BCD and 
ABCD and finally cθ  is active in region CD, BCD and ABCD. The lines in the 
diagram are boundary lines where one component is exactly at the limit of being 
distributed to both products. 


