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In laboratories and industry, process information exists in a variety of ways. 
It may come from the specification of instruments, process operation 
conditions, expert knowledge etc. Such information is valuable for improving 
the quality of models, especially when data sets are high dimensional and with 
heterogeneous distributions and measurement noise. Traditional modeling 
methods, such as PCR, PLS, fail to incorporate such prior information in 
modeling. They also often implicitly assume Gaussian or uniform distributions, 
which may be far from the truth, and , may cause the model quality to be very 
poor. To make the best use of all the information, a Bayesian modeling method, 
Bayesian Latent Variable Regression (BLVR) (Nounou et al, 2002) is 
developed. This method is developed based on Bayes rule, which provides a 
rigorous way to incorporate data and prior information. In this method, prior 
distribution and the likelihood of data are combined to get a posterior 
distribution. It contains all the information available, the Bayesian estimate is 
obtained based on the posterior distribution and a chosen loss function. Since 
BLVR has the ability of using more information, it outperforms traditional 
methods in many cases. 

However, there are some practical issues preventing the wide use of BLVR. 
The original BLVR solves an optimization problem by nonlinear programming 
(NLP), which is time consuming, particularly for a large number of variables. 
Also, this optimization-based BLVR can only provide a point estimate, and 
lacks the ability to readily provide uncertainty information. To overcome these 
problems, a sampling-based BLVR (Chen et al, 2006) is recently developed. It 
solves the optimization problem with Markov Chain Monte Carlo (MCMC) 
(Gamerman, 1997). This is a more practical Bayesian modeling method which 
is able to handle high dimensional data sets. BLVR usually assumes all 
variables to be stochastic. Since this assumption may not be valid for some 
discrete variables, especially those from designed experiments, a BLVR 
modeling procedure is also developed for hybrid data sets which contain both 
continuous and discrete variables. This modeling procedure can model the 
continuous and discrete variables with respective appropriate assumptions. 
With these advancements, Bayesian modeling methods are much easier to be 
applied to practical problems. 

Nevertheless, applying traditional methods is still more convenient than 
applying Bayesian methods and the question remains: when should Bayesian 



methods be used? That is, when is the extra effort of developing a Bayesian 
model instead of a conventional model being worth the extra effort? This 
presentation will demonstrate via theoretical and empirical arguments that if 
the amount of data available for modeling is small, then Bayesian modeling 
can perform better. This makes intuitive sense because with the incorporation 
of prior information, even with small amount of data, BLVR can still get good 
modeling results. In contrast, traditional methods often fail in this situation. 
When there are large amount of data available, the effect of prior information 
will be smaller. The signal to noise ratio also has an effect on the performance 
on BLVR. When the signal to noise ratio of output variable is much smaller 
than signal to noise ratio of input variable, BLVR has much better performance 
than traditional methods. 

These effects are demonstrated by applying BLVR to a simulated example. 
Three types of prior is used for BLVR, uniform prior (u), historical Gaussian 
prior (h) and true Gaussian prior (t). Table 1 shows the MSE of testing data 
(200 observations) for PLS, MLPCR and BLVR with different priors normalized 
by the MSE of PCR when the number of training observations changes. Table 
2 shows the MSE of testing data (200 observations) of those methods when 
the signal to noise ratio in output variables varies while table 3 shows the MSE 
when the signal to noise ration in input variables varies. 

Table 1. Testing MSE of Y for different numbers of training data normalized by testing MSE of 
PCR, SNR in input variables and output variable are both 3, 50 realizations 

Number of Training 
Data 

PLS MLPCR BLVR(u) BLVR(h) BLVR(t) Normalization Factor 
(MSE of PCR) 

200 1.0090 0.9561 0.9587 0.8939 0.8671 277.7491 
100 1.0884 0.9623 0.9663 0.8014 0.7896 306.5697 
50 1.2237 0.9572 0.9592 0.6415 0.6413 421.8590 
25 1.6583 0.9620 0.9427 0.4835 0.5084 618.3589 
10 1.0000 0.9912 N/A 0.1730 0.1777 2467.5 

Table 2. Testing MSE of Y for different SNR for Y normalized by testing MSE of PCR, 200 
observations in training, SNR for X is 3, 50 realizations 

SNR of Y PLS MLPCR BLVR(u) BLVR(h) BLVR(t) Normalization Factor 
(MSE of PCR) 

27 0.9868 0.9581 0.9664 0.9201 0.9168 265.1168 
9 0.9894 0.9567 0.9602 0.9181 0.9037 257.8655 
3 1.0090 0.9561 0.9587 0.8939 0.8671 277.7491 
1 1.0677 0.9522 0.9584 0.7798 0.7335 323.3444 

 



Table 3. Testing MSE of Y for different SNR for X normalized by testing MSE of PCR, 200 
observations in training, SNR for Y is 3, 50 realizations 

SNR of X PLS MLPCR BLVR(u) BLVR(h) BLVR(t) Normalization Factor 
(MSE of PCR) 

27 1.1949 0.9784 0.9772 0.6866 0.5976 53.8212 
9 1.0678 0.9633 0.9615 0.8147 0.7573 120.1099 
3 1.0090 0.9561 0.9587 0.8939 0.8671 277.7491 
1 0.9466 0.9234 0.9428 0.9400 0.8804 594.6353 

Another challenge in applying Bayesian modeling methods is in obtaining 
information about the prior and likelihood distributions. Such information often 
has to be obtained from experts, who may communicate it in a 
non-probabilistic manner. For example, the range of variation or values of first 
and second moments may be known a priori. Maximum Entropy (ME) (Jaynes, 
1968) methods have been developed in other areas for the elicitation of prior 
distribution. These approaches can be adapted for getting prior and likelihood 
distributions for BLVR based on available information. These distributions can 
also be obtained via an empirical approach called empirical Bayes (Carlin and 
Louis, 2000). In this approach, even without extra information other than 
current data set itself, parameters for the prior and likelihood distributions can 
still be estimated. Noninformative prior can also be used, such as the well 
known Jeffreys prior (Jeffreys, 1961). With the help of those techniques, prior 
and likelihood distributions can be elicited in a rigorous manner. 

This presentation will discuss a variety of practical case studies on 
Bayesian modeling including a simulated high dimensional data set, an 
industrial high throughput screening data set, and other modeling tasks based 
on laboratory data. Illustrative examples of elicitation of prior distribution will 
also be presented. 
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