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Abstract 
 

In order to design a sustainable chemical process, its economic, environmental 
and societal objectives need to be achieved simultaneously. This can be formulated as a 
multi-objective optimization (M-OO) problem. A chemical process comes across 
various uncertainties throughout process design and operation in the form of 
manufacturing variations, material property variations, market fluctuation, etc. Hence, 
M-OO under uncertainty techniques need to be deployed to search the optimal strategy 
for sustainability enhancement. 

 
Gani’s group developed a methodology for systematic generation and 

evaluation of alternatives in the design of sustainable processes. This work attempts to 
extend the prior research in this field by introducing M-OO under uncertainty in 
process design for sustainability. A multi-step optimization approach is utilized to 
achieve the final decision. The effectiveness of this methodology is demonstrated by 
means of a case study. 
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1. Introduction 
 
Economic, environmental and societal concerns are three integral components of 

sustainability1. In order to enhance the sustainability of chemical processes, these 
objectives need to be achieved simultaneously2. Moreover, various uncertainties affect 
the chemical process throughout process design and operation in the form of 
manufacturing variations, material property variations, market fluctuation, etc., which 
make the task more difficult. Thus, we need to solve this multi-objective optimization 
(M-OO) problem under uncertainty in order to identify the most sustainable process 
design solution. 

 
Gani’s group developed a methodology for systematic generation and evaluation 

of alternatives to design sustainable processes3. Our work attempts to extend the prior 
research in this field to develop a systematic methodology to identify the most 
sustainable chemical process from a number of alternatives. The utility of this 
methodology is demonstrated by optimizing the design of a condensate treatment unit 
in an ammonia plant. 

 
The remainder of the paper is organized as follows. Section 2 includes 

description of the optimization objectives for sustainability enhancement. Section 3 
presents a multi-objective optimization algorithm under uncertainty. Section 4 
demonstrates the effectiveness of this methodology by a case study on the treatment of 
process condensate in an ammonia synthesis plant, and the conclusion and discussion 
is given in section 5. 

 
2. Design Objectives  

 
Sustainability metrics proposed by the IChemE and AIChE cover environmental, 

economic and societal aspects of sustainability1,4. In this work, as an initial attempt, 
only economic and environmental objectives are considered. 
 
2.1 Economic objective 

 
Traditionally, while optimizing a process, only the profitability of the process was 

used as the objective to be maximized. In this work, the profit is defined as the 
difference between the income and annual cost. 

        max  f1= In - Mc                     
(1) 
where: f1 - process profit, (M$⋅year-1). 

 In - income from product and recycled mass and energy, (M$⋅year-1). 
Mc - annual cost, (M$⋅year-1). 

 
The income is expressed as: 

                                           (2) 
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where: Ei – production rate of product, recovered by-product and energy, (106 units⋅ 
year-1). 

  Pi - price of product and energy, ($⋅unit-1). 
 
The annual cost is expressed as: 

            Mc=Rw+OP+Cap                      (3) 
where: Rw - raw material cost, (M$⋅ year-1). 

  Op - operating cost, (M$⋅ year-1). 
  Cap - annual capital cost, (M$⋅ year-1). 

 
2.2 Environmental objective 

 
The environmental performance of an industrial process is related to resource 

usage, emissions, effluents and waste5. These can be classified into three 
environmental impact categories: physical potential impacts (acidification, greenhouse 
enhancement, ozone depletion and photochemical oxidant depletion), human toxicity 
effects (air, water and soil), and eco-toxicity effects (aquatic and terrestrial)6-8. 

 
The environmental impact of a chemical compound can be calculated in a way 

similar to the WAR algorithm. It is defined as a function of the amount of chemical 
species being dischareged and its corresponding environmental impact index(EII). 
Thus the environmental objective, which is to be minimized, can be defined as, 
 

                                           (4) 
 

where�f2 – environmental impact, (kg·year-1). 
      Fuc - mass flow rate of discharged fluid, (kg·year-1). 

  ci - mass fraction of chemical species i in discharge fluid. 
  ei - Environmental impact index of chemical component i in discharge fluid 
  m – total number of chemical species present in the discharge fluid  

 
3. Methodology for Multi-Objective Optimization under Uncertainty 

 
A Chemical process comes across various uncertainties throughout the phase of 

design and operation. These uncertainties include manufacturing variations, material 
property variations, market fluctuation, etc. Hence, the search for the optimal design 
and operational strategy for sustainability can be formulated using techniques of 
M-OO under uncertainty. 

min.   f i(x,u,ε)  i=1,2,…,n                   (5)   
s.t.    h(x,u,ε) =0 

g(x,u,ε) ≤ 0 
x ∈X, u∈U, ε∈ Ξ                          

(6) 
where, f is the objective function. h and g are the vectors of the equality and 

inequality constraints; x ⊂ Rn, is the n-dimensional of state vector, u ⊂ Rm is the 
m-dimensional  decision vector, and ε⊂ RS is the s dimensional uncertainty vector, 
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respectively. 
  

 
The impact of equality constraints h is the projection of the uncertain variables in 

the state space, given some decision variables u. This implies that the required values 
of state variables x can be computed by a multivariate integration of the model, i.e., x 
is a function of u and ε. So h can be eliminated from the above constraints9. 

 
Uncertainties may change design decisions significantly. Classical methods for 

solving problems under uncertainty include stochastic programming, robust stochastic 
programming, probabilistic(chance-constraint) programming and fuzzy programming. 
All these methods have their own advantages and disadvantages10-12.  

 
This work is based on the prior research done by Matton and Messac13 and 

applies Pareto optimization under uncertainty methodology to process design for 
sustainability.  The optimization steps in this methodology are discussed below: 

 
   Step 1: To minimize the mean values of multi-objective optimization metrics. 

        min  ),(
_

uxf i     i=1,2,...,n                       (7) 

where 
_
f is the mean of f. 

 
Step 2: To obtain standard deviations of the response variables σf determined 

by comparison of random input variables x, u and means of x (
_

x ) and u (
_

u ). 

Step 3: To shift the deterministic optimal solution by κσy to be (
_

f + kσy) while 

considering uncertainties. It needs to be explained that k is a positive number that 
corresponds to the probability of uncertainty that would happen. It also reflects the 
reliability for design decisions. Table 1 illustrates the relationship between k and 
probability of uncertainty. If k = 0, that means the decision is deterministic, in other 
words, the decision is made based on the mean values of the design parameters. This 
decision would be unreliable in real world without considering uncertainty. In contrast, 
higher value of k indicates lower probability of uncertainty and a more reliable 
decision. k=6 represents highly reliable decisions (“six-sigma” decisions) 14. 
 

Table 1. Relationship between k and Uncertainty Probability 
K 0.0 0.5 1 1.5 2 3 4 4.5 5 
Probability (%) 100 61.7 31.7 13.4 4.55 0.27 6.4e-5 8e-6 6e-7 

 
Step 4: To obtain the optimal solution based on the expected solution and the 

knowledge gained from the shifted Pareto frontiers from the above steps.  Singh and 
Lou15 developed a methodology on hierarchical Pareto optimization for the sustainable 



development of industrial ecosystems.15 The consideration of uncertainties in decision 
making/ decision analysis will enhance their proposed methodology and enrich the 
knowledge base in design for sustainability. 
 
4. Case Study 

 
The Pareto optimization under uncertainty developed to design for sustainabile 

processes is applied to a process condensate treatment unit in an ammonia synthesis 
plant. 
 
4.1. Problems statement 

 
Process condensate in an ammonia production process (Kellogg process) 

comprises of discharge from the hydrogen and nitrogen compressor as well as 
separators among adjacent segments. It contains ammonia, methanol, methane, urea 
and carbon dioxide. The condensate cannot be discharged directly due to its potential 
of pollution. Moreover, its direct discharge would cause loss of useful raw material 
such as ammonia, methanol, methane, and urea. Table 2 shows the process condensate 
data obtained from a plant. 

 
Table 2. Process Condensate Data 

 
 Concentration     (ppm) 
NH3 CO2 CH3OH Urea CH4 

Flow rate 
kg·h-1 

T 
°C 

P 
MPa 

1612 1672 573.4 144 0.91 100000 217 3.75 
 
4.2.  Process Alternatives  

 
A typical technique to treat process condensate is steam stripping. Natural gas, 

medium-pressure (MP) steam, or low-pressure (LP) steam can be used for stripping the 
process condensate. In this case study, initially five alternatives for treatment of 
process condensate were proposed as shown in Fig.1 to Fig.5. Figure 1 illustrates 
saturated humidification by natural gas, Fig. 2 shows LP steam stripping reflux, Fig 3. 
shows condensate stripping technique using only MP steam, schematic in Fig. 4 uses 
saturated humidification followed by MP steam stripping and the schematic in Fig. 5 
uses saturated humidification followed by LP Steam stripping16. 

 
Pre-screening and multi-objective optimization are conducted to identify which 

alternative is most desirable from both economic and environmental point of view. In 
this work, Aspen simulation was used for the initial analysis. 

 
Natural gas is one of the raw materials used in ammonia production. In this case 

study, the flowrate of natural gas is fixed based on the production throughput. 
Alternative (1) uses natural gas to strip the condensate in the saturation column. Here 
most of the chemical components are transferred from liquid phase to gas phase. Still, 
the treated condensate does not reach the allowable emission concentration due to the 



limited amount of natural gas available. Thus alternative (1) could not satisfy the 
separation requirement. 

 
Alternative (2) is also called reflux stripping. According to the simulation results, 

the treated condensate from the LP stripping column can be used as make-up water for 
boiler or discharged directly. The effluent steam from the top of the column can neither 
be transferred to the production operation unit (converter I) directly due to its low 
pressure and low temperature, nor be emitted in air as it contains ammonia, methanol, 
methane, and carbon dioxide. Thus, it is condensed and sent back to the stripping 
column to recover these useful components. The non-condensing emission gas from 
the condenser, which has trace amounts of ammonia, methanol, and carbon dioxide, is 
discharged to the atmosphere directly, thereby causing negative environmental impact. 

 
Thus both alternatives (1) and (2) are rejected for future consideration. The other 

three alternatives can satisfy the separation requirement for stripped process 
condensate. The saturated gas leaving the saturation column and the stripping steam 
from MP steam stripping column are transferred to the converter I to be used as raw 
material. The treated condensate is either discharged, or reused as boiler supply water. 
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4.3. Decision variables  

 
Condensate inlet temperature (T) and MP/LP steam flow rate (F) have significant 

influence on separation, and they are considered as decision variables. The value of 
inlet temperature ranges from 100ºC to 245ºC and that of steam flow rate is from 8000 
kg·h-1 to 35000 kg·h-1. Other operating or equipment parameters are considered fixed 
during optimization. The inlet temperature/flow rate of natural gas is 217ºC /22000 
kg·h-1. The number of plates required in the saturation column as well as the stripping 
column is 15. 
 
4.4. Objective functions and constraints 

 
As discussed in part 2, there are two optimization objectives in this work: profit 

maximization and environmental impact minimization. It is difficult to express the 
relationship between the decision variables (F, T) and the economic and environmental 
performance.  Therefore, the proposed design is simulated using ASPEN Plus firstly. 
Then, using these results regression models are developed to correlate the relationship 
between the decision variables and the economic and environmental performance. The 
parameters used in this optimization are listed in Tables 3 and 4. Note that since these 
monetary values are based on the information from a foreign plant, they may not 
reflect the prices in US. 

 
In this work, the environmental impact index (EII) ei in Eq.(4) is calculated using 

a short-cut approach, which calculates the “relative” stress caused by each chemical 
species present in a discharge stream rather than the “absolute” value of their 
environmental impact. The absolute value of the environmental impact caused by each 

Fig. 5.  Saturated Humidification followed by LP Steam Stripping  
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chemical was retrieved from the U.S. EPA's TRACI data base 6,17. In order to calculate 
the relative impact factor for a given compound in a mixed stream, firstly all the 
impact factors for each category (e.g. acidification, eutrophication, human health 
non-cancer, etc.) are identified, then the relative value of each factor for these 
chemicals in particular category is calculated. For example, both methane and carbon 
dioxide contribute to “Global Warming” and have an impact factor of 23 and 1 
respectively. In order to calculate the relative impact factor, each factor is divided by 
the sum of all the factors. This short cut approach provides a rough idea of the impact a 
chemical can cause relative to other chemicals. The EII value reflects the “relative” 
impact of a given chemical relative to other chemicals used in or discharged from these 
target processes. Tables 5 and 6 illustrate the calculation of EII of process chemicals in 
air and water.  This short-cut method can be conveniently used in evaluating the 
environmental performance of process alternatives. 

 
Table 3. Price Data 

 
 H2O NH3 CH3OH Natural 

Gas 
Steam 

Price 0.125 
($·ton-1) 

312.5 
($·ton-1) 

250 
($·ton-1) 

160 
($·ton-1) 

6.25 
($.MMkCal-1) 

 
Table 4.  Annualized Capital Cost 

 
 Saturation 

column 
LP-stripping 

column 
MP-stripping 

column 
Capital Cost 

($· yr--1� 
2.25×104 1.88×104 2.63×104 

 
Table 5. Normalized Value of Environment Impact Index (Media: Air) 

 
Category 

 
Acidification 

 
Global Warming 

 
Eutrophication

 
Human Health 
Non-Cancer 

EII 

 Factor 
Norm. 
Factor Factor

Norm. 
Factor Factor

Norm. 
Factor Factor 

Norm. 
Factor 

 

NH3 95.4850 1.0000 0.0000 0.0000 0.1186 1.0000 3.1826 0.9668 2.9668
CH3OH 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1093 0.0332 0.0332

CH4 0.0000 0.0000 23.0000 0.9583 0.0000 0.0000 0.0000 0.0000 0.9583
CO2 0.0000 0.0000 1.0000 0.0417 0.0000 0.0000 0.0000 0.0000 0.0417

Σ 95.4850  24.0000  0.1186  3.2919   
 
 
 
 



 
 
 

Table 6. Normalized Value of Environment Impact Index (Media: Water) 
 

Category 
 

Acidification 
 

Global Warming
 

Eutrophication
 

Human Health 
Non-Cancer 

EII 

 Factor 
Norm. 
Factor Factor

Norm. 
Factor Factor

Norm. 
Factor Factor 

Norm. 
Factor 

 

NH3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0590 0.6677 0.6677 
CH3OH 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0294 0.3323 0.3323 

CH4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
CO2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Σ       0.0883   
 

 
Constraints in this optimization reflect the environmental regulations posed on 

the allowable amounts of ammonia and methanol in the treated water and emission gas, 
i.e. Cammonia≤ 10 mg⋅ l-1, Cmethanol≤ 15 mg⋅ l-1. 
 
4.5.  Pareto Optimization under Uncertainty 

 
Normally, uncertainty is caused due to the random behavior in the process, 

property, or market, etc. In this case study, the effect of price fluctuation of LP/MP 
steam on the performance of the process is investigated in terms of sustainability using 
Pareto optimization methodology given in part 3.  
  

First, Genetic Algorithm (GA)18-19 is utilized to identify the Pareto frontier that 
can maximize the economic objective and minimize the environmental objective value 
simultaneously in a deterministic case. The Pareto frontier for each design alternative 
is shown in Fig. 6, where every point on the Pareto frontier reflects a non-dominant 
solution for both economic and environmental objectives. 

 
In the Pareto frontiers in Fig. 6, it is observed that alternative (3) provides the 

lowest value of profit and highest environmental impact compared to other two design 
alternatives Thus, it is not considered for further analysis. It is also observed that 
alternative (4) can yield the highest possible profit and lowest environmental impact, 
so it is the optimal candidate in deterministic optimization. Note that the Pareto frontier 
of alternative (5) is, in fact, not vertical, as can be seen in a magnified view of this 
curve provided in Fig. 7.  
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In the second step, the fluctuation in the price of MP/LP steam (expressed in 

price per heat load, ($⋅MMkCal-1) is considered. It is assumed that the variation of the 
price follows a normal distribution, with the expected value of $6.25 MMkCal-1, and 
standard deviation of $1.25 MMkCal-1.  

 
The effect of parameter uncertainty on Pareto frontiers is expressed as kσy, where 

k reflects the probability of parameter uncertainty on the optimal objective deviation. 
In this work, two levels of probability for uncertainty are calculated, i.e., k=1.5 and 
k=3 respectively. 
 

Next, the shifted Pareto frontiers are plotted, as illustrated in Fig. 8.  Due to 
uncertainty, the Pareto frontiers shift from the deterministic non-dominant solutions to 

the new solution (
_
f + kσy).  

 
It is obvious that the variation of MP/LP steam price would change the process 

profit but not the environmental objective. As the price of MP/LP steam increases, the 
operating cost also increases which consequently decreases the profit, thereby shifting 
the Pareto frontiers to the left.  

 
The shifts of Pareto frontiers in Fig. 8 are different for alternative(4) and (5). The 

decrease in the total profit for alternative(4) is higher than that for alternative(5). When 
k=3, most points on the shifted Pareto frontier for alternative(5) have higher value of 
profit compared to that of alternative(4), even though some points in alternative(4) 
have higher environmental impact. Thus, the optimal design choice could be either 
alternative (4) or (5). It is clear that the consideration of uncertainty has changed the 
optimal solution significantly from the solution for deterministic optimization. 
 
 

Fig. 6. Pareto Frontiers in Deterministic 
Optimization 

Fig. 7. Pareto Frontier of Alternative 5 in 
Deterministic Optimization 
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 Fig.8. Effect of Uncertainty on Pareto Frontiers 

 
5. Discussion and Summary 
 

Sustainability of chemical processes can be enhanced significantly by optimizing 
the triple-bottom line simultaneously. A multi-objective decision- methodology under 
uncertainty is required to evaluate different design alternatives.  It is clear from the 
results presented in previous sections that consideration of uncertainty may change the 
designer’s choice, and avoid or minimize the potential risks.  

 
In this preliminary study, only the variation of steam price is considered which 

has significant effect on economic performance of the process but does not affect the 
environmental impacts. Nevertheless, if other uncertainties affecting the process are 
considered, the environmental performance may change as well. 
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