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Introduction: Cancer is a collection of diseases resulting from a series of genetic mutations
and is characterized by an imbalance between proliferation and cell apoptosis. Common
modalities for treating cancer include surgical excision of the tumor mass, local exposure
to radiation, or systemic administration of a chemotherapeutic agent. Whenever possible,
the tumor mass will be removed, but the surgeon cannot be certain that all cancerous cells
were excised, particularly if the cancerous mass has already become invasive. Also, by
the time of initial tumor mass detection, undetectable metastases may have already spread
to other remote body locations, motivating the use of a more systemic treatment. The
scheduling of chemotherapeutic treatments, while extensively studied in an empirical fashion,
has not been the subject of mathematical evaluation from an optimal scheduling standpoint
in the clinical setting. The latter point is especially relevant given that chemotherapeutics
also harm healthy proliferating cells, reducing patient quality of life and limiting treatment
effectiveness.

Clinical studies focus on determining dose toxicity limits and drug efficacy. Through-
out these trials, substantial data are obtained regarding plasma drug concentration, tu-
mor volume progression, and toxicity. This data serves as a basis for constructing phar-
macokinetic (PK) models for plasma drug distribution, typically through a compartmen-
tal approach; a more extensive data collection can motivate the development of complex,
physiologically-based pharmacokinetic models. While pharmacodynamic (PD) responses are
observed, clinicians are generally more concerned with the presence of a therapeutic effect
rather than accurately modeling the mechanism or magnitude of action. Consequently, treat-
ment schedules are often developed based on previous drugs with similar chemical structures
or cellular targets and may not incorporate dynamics associated with drug effect. In ad-
dition, most studies collect plasma drug concentrations, but often fail to evaluate tumor
drug exposure (i.e., the drug concentration that drives tumor PD response). Instead, the
PD effects included within tumor models are typically based on a predicted plasma drug
concentration, an assumption that may lead to an over- or under-prediction of the actual
drug effect.

Many authors have examined the chemotherapeutic dosing problem in a model-based
control framework (examples include [1, 2]), employing constraints on inputs (i.e., drug
delivery) or states (i.e., plasma drug concentration or body weight) to maintain drug admin-
istration within toxicity limits and having an objective function that minimizes the tumor
volume at a prespecified final time point. These solutions predict a characteristic 3-phase
treatment profile: maximum initial drug delivery; a non-dosing period; and the remainder
of the drug delivered at the end of the treatment window. Ethically, however, a doctor
cannot allow a tumor to grow untreated, thereby invalidating the controller formulation. In
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addition, bulk dosing at the end of the cycle, instead of at the beginning, prohibits imme-
diate future dosing. Dose schedule development, therefore, requires an alternative objective
function to obtain clinically relevant scheduling results.

One possibility is direct inclusion of a toxicity measure within the model used for
treatment design. A common toxicity, neutropenia, or a reduction in circulating neutrophil
count, is a continuous and quantifiable measure available from patient plasma which is also
monitored by physicians intermittently throughout therapy. Controllers that incorporate
models for neutrophil proliferation, recovery, and drug effect [3, 4] can return drug dosing
schedules that minimize patient neutropenia (possibly avoiding other toxicities as well) while
simultaneously minimizing overall tumor volume.

The goal of the present work is to combine plasma and tumor concentration data from
a docetaxel PK study with PD models for tumor regression and neutrophil response. These
three models were combined and the various established docetaxel regimens were evaluated
to assess overall model accuracy based on published toxicity patterns. Finally, a nonlinear
model predictive controller (NMPC) was synthesized based on the PK and PD models and
used to develop alternative dosing regimens capable of administering additional drug while
maintaining clinically established dosing constraints.

Pharmacokinetic Model: Using pharmacokinetic data from the administration of the
chemotherapeutic docetaxel, a linear physiologically-based pharmacokinetic model (PBPK)
for drug distribution in mice was developed [5]. Docetaxel was administered intravenously at
10 mg/kg to female SCID mice bearing SKOV-3 human ovarian xenografts. Mice (n = 3) were
euthanized at 0.083, 0.25, 0.5, 1, 2, 4, 6, 7, 18, and 24 hours after docetaxel administration.
Docetaxel concentrations in plasma, tumor, liver, kidney, spleen, brain, heart, and lung were
determined using an LC-MS assay. Diffusion-limited tissues (liver, brain, tumor, lung, and
spleen) were characterized with tissue subcompartments, and perfusion-limited tissues (heart
and kidney) were modeled using partition coefficients. Physiological parameters for organ
blood flow rates were taken from the literature [6] while organ volumes were based on post-
exsanguination organ masses (n = 33). Parameter estimation and structure selection was
accomplished by sequentially adding tissues while minimizing the weighted sum of squares
between the model predictions and collected experimental data.

Next, an equivalent PBPK docetaxel distribution model was constructed for humans.
Blood flow rates and tissue volumes were adjusted based on literature values [6] and scaled
for patient weights; intra-tissue exchange rates, liver clearance rate, and tissue partition coef-
ficients were left unchanged. Resulting docetaxel plasma concentrations were then compared
to clinically obtained patient docetaxel concentrations. Peak concentrations and initial drug
elimination rate were underpredicted from the scale-up, though this was not unexpected as
minimal alterations were made to the preexisting mouse PBPK model. Long-term decay
of docetaxel plasma concentration, however, was captured using the model, and overall,
the adapted mouse PBPK model is capable of representing clinical docetaxel plasma data
from humans accurately. Improvements in the human PBPK model would be possible by
adjusting parameters (i.e., liver clearance), having mouse PK information which utilized a
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longer docetaxel infusion time (> 5 seconds), or by incorporating a fat compartment within
the PBPK structure as docetaxel is highly lipophilic and fat percentage is a highly varying
parameter in humans.

Model reduction tools were employed on the human PBPK in order to aid subse-
quent controller synthesis. As the primary toxicity associated with docetaxel treatment is
neutropenia and tumor regression depends on tumor drug exposure, it was necessary to
maintain accurate predictions for plasma and tumor drug concentrations. Retention of five
states was necessary for accurate predictions as shown in Figure 1.
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Figure 1: Top: Plasma concentration data from a patient receiving a 60
mg
m2 infusion of

docetaxel over 1-hour (circles) along with the full (solid) and reduced (dashed, overlay on
solid) model plasma concentration predictions. Bottom: Full (solid) and reduced (dashed,
overlay on solid) model predictions of tumor concentration.

Pharmacodynamic Models: The reduced PK model was coupled to either a Gompertz
tumor growth model:

dN

dt
=

1

τ
N ln

(

θ

N

)

− kDGN [CDT ] (1)

or a saturating-rate cell-cycle model (SCM):

dXG

dt
= −kGSXG ln

(

θ

N

)

+ 2kMGXM ln

(

θ

N

)

(2)

dXS

dt
= −kSMXS + kGSXG ln

(

θ

N

)

(3)

dXM

dt
= −kMGXM ln

(

θ

N

)

+ kSMXS − kDSCMXM [CDT ] (4)

N = XG + XS + XM (5)

to assess tumor regression during drug administration. The Gompertz equations contain two
growth parameters, 1

τ
and θ, depicting the pseudo-doubling time of the tumor and plateau
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population of the tumor, respectively; N is the volume of the tumor. For the SCM, Xi

corresponds to the volume of cells in the G (growing), S (DNA synthesis), or M (mitosis)
phases, kij’s denote transfer rates from cell phase i to phase j, and θ is defined as above.
Drug effect is incorporated as a bilinear term, dependent on the concentration of docetaxel
in the tumor, [CDT ], the population of susceptible cells (N for the Gompertz model; XM for
the SCM), and a drug effect constant (kDG for the Gompertz model; kDSCM for the SCM).
As docetaxel is an M-phase specific agent, drug effect for docetaxel was incorporated within
the M-phase for the SCM model while docetaxel drug effect was included as a bulk effect in
the Gompertz model.

In addition, a neutrophil model was incorporated as a measure of docetaxel dosing
schedule toxicity. The model was developed by Friberg et al. [4] for representing neutrophil
response following administration of various chemotherapeutics, one of which was docetaxel.
The model consists of five differential equations with cell proliferation occurring in com-
partment 1, maturation occurring in compartments 2-4, and circulating neutrophil count
represented by compartment 5. Drug effect was limited to compartment 1 and recovery
was influenced by the ratio of circulating neutrophils to a normal baseline neutrophil value.
Parameters were adjusted from literature values based on the neutrophil data provided for
25 patients. Model predictions along with actual neutrophil count data for one patient are
shown in Figure 2.
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Figure 2: Neutrophil count data from a patient receiving a 60
mg
m2 infusion of docetaxel over

1-hour (circles) every three weeks along with model predictions for neutrophil count (solid).

Dose Schedule Development: During each cycle (12-week period), the objective function
was set to maximize total drug delivered subject to maintaining patient neutrophil counts
within accepted toxicity limits. If a patient has a measured neutrophil count < 0.5 × 109

cells/L, treatment will be discontinued (NIH Grade 4 neutropenia toxicity). Similarly, if
the patient has consecutive weekly measured neutrophil counts < 1.0 × 109 cells/L, drug
doses would be reduced or treatment would be discontinued (Grade 3 neutropenia). NMPC
algorithm results using the above dosing constrains and m = 1, p = 2, are shown in Figure 3
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(dashed line). In addition, algorithm results based on Grade 2 and Grade 3 neutropenia
toxicity constraints are shown, along with neutrophil profiles predicted by two typical doc-
etaxel administration schedules (1-hour infusions once every three weeks or 1-hour infusions
for three weeks followed by one week off).
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Figure 3: Neutrophil predictions under four separate dosing regimens: 60
mg
m2 every three

weeks starting on week 0 (dash-dot); 35
mg
m2 for three weeks, then one week off starting on

week 0 (dotted); dosing constrained to maximize delivered drug subject to medical Grade
3 and 4 toxicity constraints (dashed); and dosing constrained to maximize delivered drug
subject to medical Grade 2 and 3 toxicity constraints (solid). (circles) every three weeks
along with model predictions for neutrophil count (solid)

Overall, the model-based algorithm incorporates clinically relevant dosing constraints
and returns clinically viable treatment schedules.
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