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1. Abstract 

With the rapid growth of biotechnology and the PAT (Process Analytical Technology) 

initiative in the pharmaceutical industry, more attention is being focused on monitoring 

bioreactor production to create a safe production environment and obtain a high-quality 

product. However, a bioreactor is difficult to monitor mainly due to the following reasons: 

1) The process is always batch or semi-batch rather than continuous. 2) The dynamic 

behavior is highly nonlinear and rarely is a high fidelity model available to describe the 

dynamic behavior of the process. 3) The micro-organisms can be affected when operating 

conditions change unpredictably. 

Typically, process monitoring methods can be divided into data-driven and knowledge-

driven techniques. multiway-PCA developed by Nomikos and MacGregor [1-3] is the 

first and most widely used data-driven method in batch process monitoring. The basic 

idea of MPCA is unfolding the three dimensional batch data to two dimensions so as to 

perform PCA on the data matrix. Based on this pioneering work, more efforts have been 

made to make the technique more powerful and applicable including: 1) New data 

unfolding methods (batch-wise[1]; variable-wise[4]; hybrid-wise[5]); and 2) Batch data 

synchronization (variable indicator[2]; dynamic time warping[6]; correlation optimized 

warping[7]). Besides data-driven methods, Model Based-PCA (MB-PCA)[8] is based on 
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the fundamental knowledge of process behavior and can be successfully used in batch 

and continuous processes. If the process model is accurate, then the data unfolding and 

synchronization steps can be avoided by applying the MB-PCA method.  

In this work, we focus on finding an efficient and effective way to perform PCA on a 

penicillin fermenter simulation model. The detailed fermenter model was developed by G. 

Birol et al.[9]. MB-PCA method is also applied and compared with MPCA with DTW. 

The effect of the coupling of manipulated and controlled variables on PCA-based fault 

detection is estimated. 

 

2. Short review of multiway-PCA and Model-Based PCA (MBPCA) 

a) multiway-PCA 

For batch and semi-batch processes, there is no steady state and usually the historical 

trajectories contain considerable nonlinearity, and no effective online PCA monitoring 

technique existed prior to 1995. Nomikos and MacGregor [1-3] originally introduced the 

basic ideas of multiway PCA and PLS methods to monitor batch processes in real time. 

Since multiway-PCA requires the normal operating condition data to build PCA model, it 

is called a data-driven method. 

The multiway-PCA procedure to monitor and analyze batch processes can be 

summarized as follows [10]: 

Step A: PCA model building 

1. Batch trajectory synchronization (Optional) 
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2. Unfold the normal operating condition’s historical data X (I×J×K) into a two- 

dimensional array. I is the number of batches; J is the variable number and K is 

the sampling time.  

3. Normalize the data. (mean centering and rescaling each column to unit variance) 

4. Calculate the principal components and extract score and loading matrices. 

5. Obtain upper control limits of SPE and Hotelling’s T2. 

Step B: Fault Detection 

The data preprocessing (first three) steps are the same as those in step A 

Offline test: calculate the score of a new batch at the end of a run and compare it 

with the upper control limits. This procedure is usually used to check product 

quality. 

Online test: calculate the score of a new batch at regular time intervals during the 

batch and compare the results with upper control limits. An online test is used to 

perform real-time monitoring and if there is an alarm triggered, the contribution 

plot, which shows the contribution of each variable to the scores of SPE and 

Hotelling’s T2 at a specific time, is used to perform fault diagnosis.  

Batch trajectory synchronization can be crucial for batch process monitoring. However, 

since simulation data are used in this test, different trajectories are already synchronized. 

As a result, DTW method is not a key consideration in this paper. 

The unfolding approach leads directly to the variation information that PCA must extract. 

Batch-wise unfolding focuses on analyzing the differences among batches; variable-wise 

unfolding attempts to discover the variability between variables, and time-wise unfolding 
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is used to extract the correlation among samples (at different times). These two methods 

are widely used in batch monitoring.  

When batch-wise unfolding is used, the dynamic behavior of the batch process is 

removed by this method, which is an advantage, but the row vector data will not be 

complete until the end of a batch. In PCA online monitoring, the score and loading 

calculations need a complete dataset. Thus, one has to predict the future values for the 

whole batch, which is time-consuming and can add uncertainty, especially during the 

initial period of a batch. The variable-wise method proposed by Wold et al.[4] does not 

have this problem because only the current time data matrix (I×K) is needed for each 

time. The shortcoming of the variable-wise approach is that the system dynamics are still 

included in the dataset after preprocessing.  

 Lee et al. [5] combined batch-wise and variable-wise methods together, which leads to 

hybrid-wise unfolding method. At first, the dataset is unfolded batch-wise and the mean 

centering and scaling steps are performed. After that, the data are rearranged to variable-

wise. The advantage of hybrid-wise unfolding is that the time dependency is cancelled 

and future data prediction is also avoided. 

The following steps are the same as continuous process PCA (steps 3-5), for more details, 

refer to [1, 10]. 

 

b) MB-PCA 

Compared with mutliway-PCA, MB-PCA does not need these steps, which can save 

computational resources. In MB-PCA, a first principles model is used to describe the 

nonlinearity and dynamics of normal operating conditions. The sample data are compared 
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with the calculated data using a first principles model and PCA is performed on the 

residual between the model predictions and the data.  If the first principles model is 

perfect, there will be no dynamics left in the residual dataset and the linear system 

assumption is satisfied. 

As a result, the residual vectors of every batch can be adjusted to have the same length 

without performing complex calculations. Then, the residual data matrix is unfolded 

( ( )KJIE ×  etc.) and scaled according to: 

( ) / ( )iij ij je e e eσ= −% ,   ie  is the mean value of each column                                           (1) 

Finally, PCA is performed on the unfolded data as continuous process. However, if the 

first principles model is imperfect, the residuals will still include dynamic effects and can 

lead to incorrect monitoring results (discussed later in section 4). 

In general, the algorithm of MB-PCA can be summarized as: 

Step A: Model building 

1. The normal operation condition values of J process variables are stored 

regularly in matrix Y (J×K). In other words, Y is a ‘slice’ of the three dimensional 

matrix ‘X’.   

2. The model calculated values are stored in matrix YM. 

3. The residual matrix (E) is calculated and normalized by: 

,ij ij M ije Y Y= −  

( ) / ( )jij ij je e e eσ= −%  

4. ije%  has zero mean and unit variance which is used in PCA model building. 

Further steps are the same as those for continuous processes. 
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Step B: Fault detection 

1. The tested values are stored in matrix Yt. 

2. The model predicted values under same control strategy are saved in YM,t 

3. Data normalization: 

  , , ,ij t ij M t ijz Y Y= −  

( ) / ( )jij ij jz z e eσ= −%  

4. ijz%  is the tested data and subsequent steps are the same as those in continuous 

process. 

3. Results and discussion. 

The detailed bioreactor model was developed by G. Birol et al.[9]. The simulated 

bioreactor volume is 1000L and the time scale is one thousand times faster than real time 

and variations are added to the process variables to mimic real industrial plants. In this 

way, all the normal batches will fluctuate around a mean trajectory. Process variable 

values are available very 2 seconds which is close to 1 hour real time. Ten process 

variables are monitored regularly, which are batch time, base reagent flow rate, head 

pressure, vent flow rate, biomass concentration, product concentration, broth pH, 

dissolved oxygen concentration, current product yield and broth temperature. Two types 

of process faults are generated: 1). Bioreactor vessel pressure sensor failure at time zero; 

2). Bioreactor pH sensor has small deviation at time zero. Another normal batch is 

generated for testing. 

Since offline detection is only used to check the final product quality, in this research 

only online monitoring is applied. Furthermore, in multiway-PCA, with batch-wise 

unfolding online, one needs to predict future process variable values. As a result, the 
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other two unfolding methods (variable-wise and hybrid-wise unfolding) are tested and 

compared. The advantage of these two methods are future value prediction is avoided 

when performing online monitoring. Ten normal batch data are used to build a multiway-

PCA model. For MB-PCA, the same process model is used to generate model values and 

the only difference between model value and real process value is there is no randomness 

in the model simulation. SPE control charts are used to monitor the process.  

In the following sections, multiway-PCA is applied and both unfolding methods are 

compared. After that, the pro’s and con’s of MB-PCA are discussed. 

3.1 multiway-PCA 

The PC number selection methods are imbedded with the NIPALS algorithm to 

determine the number of PCs that should be retained in a PCA model. Two types of 

methods (Parallel Analysis (PA) and R ratio) are used to decide the number of PCs 

retained in PCA model and Figures 1 and 2 show the results for both methods. In Figure 

4, the PA method indicates three PCs are needed while R ratio indicates one is enough. 

The process variance retained is 56.20% and 89.23% respectively. In this research, the 

number of PC’s is set to three. 
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(a) PA method result 

Figure 1. PC number selection with variable-wise unfolding method 
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(b) R ratio method result  

Figure 1. PC number selection with variable-wise unfolding method 
 

In the same way, Figure 2 shows the results of hybrid-wise unfolding. In this case both 

methods suggest three PCs with 57.16% of the process variation retained. When 

comparing Figures 1 (a) and 2 (a), it is easy to see that variable-wise unfolding has larger 
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eigenvalues. The larger the eigenvalues, the more process information indicate. However, 

after a closer look one can discover that since variable-wise unfolding does not remove 

process dynamics, the covariance may be dominated by a few variables instead of all 

variables. In other words, the covariance matrix does not fully represent the process 

variability. Furthermore, the covariance matrix cannot be used to explain the nonlinear 

relationship, hence nearly all PC selection methods are based on a linear system 

assumption. In this case, hybrid-wise is preferred over variable-wise unfolding. 
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(a) PA method result 
Figure 2. PC number selection with hybrid-wise unfolding method 
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(b) R ratio method result  

Figure 2. PC number selection with hybrid-wise unfolding method 
 

After deciding how many of PCs should be retained, Figures 3 to 5 compare the results of 

variable- and hybrid-wise unfolding on three different cases. In Figure 3, one normal 

batch is monitored by both unfolding methods. It can be seen that two methods indicate 

there is no fault during the batch. 
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(a) Variable-wise unfolding 

Figure 3. SPE control chart of a normal batch. ‘--‘ indicates upper control limit and ‘—
‘ represents monitored batch. 
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(b) Hybrid-wise unfolding  

Figure 3. SPE control chart of a normal batch. ‘--‘ indicates upper control limit and ‘—
‘ represents monitored batch. 
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In Figure 4, bioreactor vessel pressure sensor failure results are shown and both methods 

detect the fault. Furthermore, hybrid-wise unfolding detects the fault from time zero 

while variable-wise has a 50 unit time interval delay. Hybrid-wise unfolding is also 

favored since the monitored value violates the upper control limit much more compared 

with variable-wise.  
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(a) Variable-wise unfolding 

Figure 4. SPE control chart of vessel pressure sensor failure case. ‘--‘ indicates upper 
control limit and ‘—‘ represents monitored batch. 
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(b) Hybrid-wise unfolding 

Figure 4. SPE control chart of vessel pressure sensor failure case. ‘--‘ indicates upper 
control limit and ‘—‘ represents monitored batch. 

 

Different from the pressure sensor failure case, the pH sensor has only a small deviation 

compared with normal operating condition. The SPE control charts of both methods are 

shown in Figure 5. It can be seen that hybrid-wise unfolding detects the small deviations 

along the batch while variable-wise unfolding treats the batch as normal for the whole 

batch.  

All these results suggest that hybrid-wise is preferred over variable-wise unfolding and 

mutliway-PCA, and a small number of batch data (ten in this case) is still effective in 

monitoring. 
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(a) Variable-wise unfolding 

Figure 5. SPE control chart of pH sensor failure case. ‘--‘ indicates upper control limit 
and ‘—‘ represents monitored batch. 

 

 
(b) Hybrid-wise unfolding 

Figure 5. SPE control chart of pH sensor failure case. ‘--‘ indicates upper control limit 
and ‘—‘ represents monitored batch. 
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3.2 MB-PCA 

Three cases tested above are also calculated by MB-PCA and the results are summarized 

in Figure 6. It can be seen that MB-PCA gives satisfactory results on all cases. In addition, 

MB-PCA does not require data synchronization and data unfolding, these advantages can 

save the computation resource a lot. However, in order to obtain correct results, MB-PCA 

needs a process physical model that needs more engineering effort to build in order to 

describe the process accurately. Figures 3 to 6 also indicate both methods can be very 

accurate in batch process monitoring. Table 1 compares both methods from different 

aspects and, from the point of view of efficiency and accuracy, multiway-PCA is favored 

for a batch process. Meanwhile, it is worthwhile to point out that for a bioprocess where 

the recipe always changes, MB-PCA can be useful since multiway-PCA needs operating 

condition data, which can be time-consuming to generate (sometimes a few months). For 

MB-PCA, one only needs to update a few kinetic and physical constants. 
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(a) Normal batch 
Figure 6. SPE control chart by MB-PCA. ‘--‘ indicates upper control limit and ‘—

‘ represents monitored batch. 
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(b) Vessel pressure sensor failure 

Figure 6. SPE control chart by MB-PCA. ‘--‘ indicates upper control limit and ‘—
‘ represents monitored batch. 

 

(c) pH sensor failure 
Figure 6. SPE control chart by MB-PCA. ‘--‘ indicates upper control limit and ‘—

‘ represents monitored batch. 
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Table 1. multiway-PCA and MB-PCA comparison 
 multiway-PCA MB-PCA 

Physical model Not needed Accurate physical 
model information 

Synchronization 
(such as DTW) 

Suggested Not needed 

Different unfolding 
method 

Further treatment 
(multiple options) 

Does not matter 

Applicable system Does not matter Simple system 
Normal operating 

data 
Many batches are 

needed 
One batch 

 

4. Conclusions 

Two different unfolding methods of multiway PCA are applied to a simulated industrial 

fermerter data. Hybrid-wise unfolding is preferred over variable-wise since it can remove 

process dynamics and our calculation results verified this. MB-PCA is also applied to the 

same system and comparisons are made between MB-PCA and multiway-PCA; multiway 

is preferred in terms of efficiency and accuracy most of the time. 

Future work will focus on batch process diagnosis based on multiway-PCA and other 

MSPC methods.  
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