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ABSTRACT 
 

This paper discusses the current developments within a novel environment to perform related 
model-based activities. In particular, the paper focuses in the modules corresponding to data pre-
processing and dynamic data reconciliation. In terms of the former module, this work discusses 
the implementation of three approaches based on the minimum median distance (MMD), the 
moving median (MM), and the modified MT filter for the detection of outliers. Regarding the 
data reconciliation module, the error-in-variable method (EVM) was implemented in gPROMS as 
an important extension to the environment. Finally, the pre-processed data was used to evaluate 
the performance of the different outlier detection/cleaning methods in the dynamic EVM data 
reconciliation. Results show that the MM filter has the best performance among the outlier 
cleaning techniques, followed by the modified MMD method. It is demonstrated that the current 
EVM implementation is able to perform the reconciliation for complex non-linear dynamic 
modules and at the same time to estimate parameters and gross errors. 

 
 

1. INTRODUCTION 
 

Through out the years, chemical engineers have been searching for solutions to daily problems at 
plant scale. Obtaining a good set of data for further analysis is unquestionable since many plant 
decisions rely on the results of these analyses. One of the main purposes of having a “cleaned” data is to 
reconcile the process variables, this means to adjust the process measurements to obtain a better estimate 
of the process variables (flow rates, temperatures, compositions, etc.) in such a way that they are 
consistent with the mass and energy balances (Romagnoli and Sanchez, 2000). Once the reconciled data 
is obtained, more accurate parameters can be estimated. Different methods and objectives functions are 
available to perform these activities either separate or together, the latter is known as joint data 
reconciliation and parameter estimation (JPEDR). The objective function most widely used is the least 
squares function, which consists in minimizing the sum of the squared deviations between the 
measurements and the estimates.  
 

The consolidation of the CAPE (Computer Aided Process Engineering) community in the 
1990’s, and the subsequent development of the CAPE-OPEN (CO) project paved the way for a 
paradigm shift which encouraged the development of a model-centric framework for support of process 
operations. The definition of model-based activities typical of industrial processes was tackled in a novel 
framework presented by Rolandi and Romagnoli (2004). In this work, they proposed an innovative 
methodology for simplifying the problem formulation by incorporating the Problem Definition 
Environment (PDE) to complement contemporary developments in Open Simulation/Optimization 
Architectures. The PDE is a software component responsible for the definition of a given model-based 
engineering problem through a friendly user interface; it allows the selection of variables, and the 
statement of the specific activity to be performed. Then, to solve the problem, it delegates the 
corresponding model-based activity to a powerful modeling and solution engine (MSE). Because of 



these characteristics, the PDE offers the possibility of executing model-based activities typical of 
industrial applications providing additional consistency of results and using a single model 
representation. 

 
In this work we will discuss our improvements to the framework in the data pre-processing and 

dynamic data reconciliation (DDR) modules. Regarding the DDR, the error-in-variable method (EVM) 
was implemented as an important extension to the framework previously developed. In EVM data 
reconciliation, errors are considered to be present in both input and output variables in contrast to the 
“traditional” data reconciliation, in which errors are considered to be present only in the output 
variables. In terms of data-preprocessing, we will discuss the implementation of an approach based on 
the Mean Minimum Distance (MMD) for the detection and median replacement for the rectification of 
outliers. Furthermore, the extension of the MMD method with median replacement applied to individual 
variables was considered, allowing the method to detect not only the time where the outlier is present, 
but also the individual variables contributing to the outlier. The moving median (MM) and the modified 
MT filter were also implemented. The pre-processed data was used in the reconciliation module to 
evaluate the performance of the different outlier detection/cleaning techniques. 
 
1.1 Overview 
 

The remainder of this paper is organized as follows. Section 2 contains an introduction to the CO 
standards. Section 3 presents a description of the environment of the Integrated Operation Support 
System (IOpSS) along with the methodology followed for its implementation, and discusses the 
proposed enhancements in the data pre-processing and data reconciliation modules. Section 4 describes 
the case study used in this work, along with the results obtained in both the data pre-processing and 
reconciliation. Finally, section 5 draws some conclusions and proposes topics for further work. 
 
2. THE CAPE-OPEN PROJECT  
 

The CO project was initiated with the ultimate purpose of allowing “complex process-modeling 
tasks and model-based applications to be performed successfully and cost-effectively via the 
collaborative use of software components from a wide variety of sources, possibly being executed on 
different computer hardware” (Braunschweig et al, 2000). To make this possible, two key concepts were 
defined within the project: the PMCs (process modeling components), and the PMEs (process modeling 
environments). The PMCs are well defined software components in charge of a specific function, such 
as the calculation of physical properties, or the provision the numerical methods to solve the underlying 
mathematical problems. On the other hand, PMEs provide the mechanisms for configuring individual 
elementary models and coordinating the calls among the necessary PMCs to solve the corresponding 
model-based activity.  

 
After its completion, the CO gave raise to a new project, the Global CAPE-OPEN (GCO), aimed 

to develop additional standards to the modeling and simulation areas, to encourage the creation of 
software guided by those standards, and to form the “CAPE-OPEN Laboratories Network” (C.O.Lan) 
whose objective is to provide support to CO developers and to maintain the standards. It was expected 
that by the end of the GCO project, there would be a greater acceptance of the CAPE-OPEN standards 
for communication between components in process engineering (The GCO consortium, 2002). 

  
 
 



3. THE INTEGRATED OPERATION SUPPORT SYSTEM 
 
3.1 Architecture of the framework 
 

In addition to the PDE introduced previously, Rolandi and Romagnoli proposed two more 
concepts for the communication between the actors in their model-centric framework: the Data Model 
Templates (DMTs), and the Data Model Definitions (DMDs). The DMTs are data structures defining the 
process variables to be used for further manipulation (a subset of all process variables), their nominal 
values and other properties related to their structural function. The identity of the variables to be used in 
the different activities is given by the DMT so that only those specifically identified by the DMT are 
shown to the user for their selection. More importantly, the DMT creates a link between the name of the 
variables as known by the user, and their names in the model implementation. In this way, the sensor 
tags (DCS tag name) will be presented to the user (e.g. a process engineer) and possible confusion with 
the variable names could be avoided. A given implementation of a DMT for data reconciliation is 
presented in figure 1.  
 

DCS Tag Name gPROMS Tag Name FP Value MV PC LowBound Guess UppBound EV RV IV OF OV CV Sel

KinPremultR1 SYSTEMCSTR.CSTR1.K 2 3.49E+07 1.00E+07 3.49E+07 9.00E+07 1
kInPremultR2 SYSTEMCSTR.CSTR2.K 2 3.49E+07 1.00E+07 3.49E+07 9.00E+07 1
UA-R1 SYSTEMCSTR.CSTR1.UA 2 7.50E+02 6.00E+02 7.50E+02 8.00E+02 1
UA-R2 SYSTEMCSTR.CSTR2.UA 2 7.50E+02 6.00E+02 7.50E+02 8.00E+02 1
Product_Value SYSTEMCSTR.Pval 2 5.00E+02
Cost_Reactants SYSTEMCSTR.ReactCost 2 2.00E+00
Coolant_Cost SYSTEMCSTR.CoolCost 2 2.00E+01
QF SYSTEMCSTR.MV(3) 1 7.00E+00 1 1
QF-B SYSTEMCSTR.BIAS(3) 0.00E+00 0.00E+00 0.00E+00
QF-E SYSTEMCSTR.ERROR(3) -1.00E-01 0.00E+00 1.00E-01
QIN-1 SYSTEMCSTR.MV(4) 1 5.00E+00 1 1 1
QIN-1B SYSTEMCSTR.BIAS(4) 0.00E+00 0.00E+00 0.00E+00
QIN-1E SYSTEMCSTR.ERROR(4) -1.00E-01 0.00E+00 1.00E-01
QC-1 SYSTEMCSTR.MV(7) 1 2.50E+00 1 1 1
QC-1B SYSTEMCSTR.BIAS(7) 0.00E+00 1.00E+00 2.00E+00
QC-1E SYSTEMCSTR.ERROR(7) -1.00E-01 0.00E+00 1.00E-01
QO-1 SYSTEMCSTR.MV(10) 1 5.00E+00 1
QO-1B SYSTEMCSTR.BIAS(10) -2.00E+00 -1.00E+00 0.00E+00
QO-1E SYSTEMCSTR.ERROR(10) -1.00E-01 0.00E+00 1.00E-01
Least Squares SYSTEMCSTR.LSQINT 0.00E+00 1
TO-1I SYSTEMCSTR.CSTR1.TOO 2.98E+02 1  

Figure 1. DMT for reconciliation activities 
 
DMDs represent a valid model-based activity and its related plant dataset, acting as a map of the 

problem definition. The data in the DMT is used to create a DMD file or case study once the desired 
variables have been selected. Since the DMTs and DMDs are language-independent structures they can 
be incorporated within different PDEs.  

 
Figure 2 sketches the interaction among entities. The problem definition is the first stage for the 

problem formulation; here, the PDE extracts from the DMT the available variables to be presented to the 
user who modifies their values according to his/her specific problem. Thereafter, the corresponding 
DMD is created using this information and the plant data. During the problem translation stage, the PDE 
constructs one or more problem input files (PIFs) which are a translation of the DMD into a language-
specific high-level declaration guided by the semantic rules of the MSE under consideration. The last 
stage, the problem initialization, the problem is instantiated; this means that abstract model defined 
within the PDE is converted into concrete entities. Finally, the PME calls the necessary PMCs to execute 



and solve the stated problem.  The developed iOpSS is a PDE, and gPROMS (general PROcess 
Modelling System) is used as the MSE for the solution of the formulated problems. Therefore, one or 
more gPROMS input files (PIFs) are created for using during the actual problem solution stage (e.g. 
ESTIMATION, EXPERIMENT, PROCESS, and OPTIMIZATION entities).  

 
Figure 2. Interaction among entities in a model-based problem  

definition and solution. Adapted from Rolandi and Romagnoli (2004) 
 
3.2 The environment of the iOpSS 
 

The user-interface of the iOpSS has been designed in such a way that allows a flexible definition 
of complementary engineering problems. At the moment, such problems are represented within the 
iOpSS by four model-based activities (simulation, parameter estimation, data reconciliation, and 
optimization) sharing a common mathematical model of the system. Moreover, some activities may be 
combined to define more complex problems. For instance, it is possible to define problems of joint 
parameter estimation/data reconciliation, joint gross error estimation/data reconciliation, or joint 
parameter/gross error estimation/data reconciliation. Additionally, the environment allows the pre-
processing of the data for further use in such activities, so that outliers can be removed from the dataset. 
Figure 3 depicts the main window of the iOpSS’ environment.  
 
 
 
 
 
 
 
 
 
 
 
 
 
              Figure 3. iOpSS user-interface                                  Figure 4. First stage in data reconciliation 
                                                                                                                     problem definition 
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Once an option has been selected, the application brings a window corresponding to the next 

level of information required. In the case of data pre-processing, for example, the user will be asked to 
select the desired window size and cleaning method. The estimation/reconciliation activities, on the 
other hand, require a series of consecutive windows for the selection of the estimation and reconciliation 
variables, and the statistical model for the variance, among others. Figure 4 shows the first stage in the 
data reconciliation activity. 
 
3.3 The data pre-processing module 
 

An outlier or gross error can be defined as a data point not representative of the statistical 
distribution where it belongs to. Usually, these observations have a strong influence in the analyses with 
their deletion causing significant changes in the estimates, confidence regions and other tests 
(Romagnoli and Palazoglu, 2005). To obtain better estimates, therefore, the outliers present in the data 
should be either eliminated, or incorporated to the bulk of data through the use of a suitable technique.  
 

As it was mentioned previously, three methods were implemented in this module for the 
detection and rectification of outliers. All of them are based on a moving window which size is selected 
by the user. A more detailed description of these methods is presented next. 
 
Median (MM) filter 

The MM filter was first introduced by Tukey (1977), on his work on exploratory data analysis, 
and it is viewed as a smoothing technique. If a set of data points are equally spaced, it can be smoothed 
according to: 

 
Given data = Smooth  + Rough          (1) 

 
The method is based on the selection of a subset of data from the sequence and the replacement 

of each element by its corresponding median value. The subset is moved throughout the entire sequence 
to replace every data point. In the medians of three, for example, three points are taken initially and the 
second element from them is replaced by their median. Then, the next three elements are taken into 
consideration with the first element being overlapped (the first element in the second subset is the last 
element from the first one), and the same procedure is applied. This is repeated until all data points from 
the sequence are considered.  
 

The number of elements taken for the median calculation may be varied according to the type of 
data. It can be seen, however, that the application of this method leads to an inconvenience: the first and 
last point from the sequence, in the case of medians of three, do not have an assigned median. This 
problem was envisioned by Tukey, who also proposed several procedures to estimate the end values of 
the smoothed sequence. One of them, and the one used in this work, consists on selecting the median of 
three estimates: a) the actual end-value (no smoothed), b) the last smoothed value, and c) the result of an 
extrapolation to one step beyond the actual end-time. 
 
The Mean Minimum Distance (MMD) 

To detect outliers, this method bases in cluster theory, in which a set of data is divided in groups 
according to the distances of the elements to each other. Closer elements are said to belong to the same 
cluster, and therefore, they are more similar to each other than the elements from a different cluster 
(Chen and Romagnoli, 1998). For a dynamic process, the main structure is considered to be an elongated 



cluster. When outliers are present, they are detected as points (or clusters) that do not belong to the 
underlying elongated one. 
 

The distance of one object to its nearest neighbor is called the mean minimum distance (MMD), 
and it is the criteria to detect the main cluster. A data point (d-dimensional) is considered to be an outlier 
if the minimum distance between the measurement Yi and any other in the window is less than twice the 
MMD (distance < 2 MMD). In a d-dimensional space, and considering that the variables may have 
different variation, the MMD is defined as: 
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Where  N is number of objects (Y1, Y2, …, YN), and kυ is the k-th element of the covariance matrix.  
 
On the contrary to the MM filter, the MMD is not applied to individual variables but to the entire 

dataset for a given time (d-dimensional space), this makes difficult the identification of individual 
outliers, this is, the determination of the variable which is contributing the most to the presence of the 
outlier. The knowledge of the specific variable contributing to the outlier is useful for further analysis, 
such as finding a faulty instrument or the model equation producing such errors. To address this issue, 
we propose the use of the MMD method in two stages. The first stage corresponds to the method as 
described above, meaning that the MMD is found for the d-dimensional space. The second stage is the 
application of the method to the individual variables so that the one contributing the most to the outlier 
is identified, and its value for that particular time is replaced with the median of the current window. It 
will be shown later that a better estimate is obtained when the criteria for the determination of the 
outliers is decreased from 2 to 0.5. This value is then considered as a tuning parameter. 
 
The modified MMD for a one-dimensional space would look like: 
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Modified MT filter 

The MT filter method was first developed by Martin and Thompson (1982), to clean data that 
follows an autoregressive (AR) model. The algorithm is as follows: 
 

1. Having the AR(p) model in state-space form, the filter computes robust estimates of the vector of 
measurements by means of a matrix Mt.  

2. Matrix Mt is calculated recursively making use of the matrix of errors. 
3. A robust prediction one-step ahead is calculated, and the cleaned data is estimated. 

 
Liu et al (2004) proposed an extension of the MT filter-cleaner in which there is no need to know 

a priori the underlying model of the data. In their revised version of the algorithm, the AR(p) model is 
determined making use of the available data, and a moving window. The procedure is as follows: 
 

1. Choose a dataset with a specific window size. 



2. Select the order of the AR(p) model. This means to select the value of p. 
3. Estimate the decorrelation model, using a robust variance and mean, and forming multivariate 

datasets for the calculation of the covariance matrix. The coefficients of the covariance matrix 
are used to calculate the autocorrelation coefficients. With these last coefficients, the Yule-
Walker equations are solved to obtain the process model. 

4. Construct the state-space form and apply the MT filter as described by Martin and Thompson. 
5. Repeat the procedure for the next window until all the dataset has been cleaned. 

 
3.4 The dynamic data reconciliation module 
 

Data reconciliation refers to the process of obtaining better measurement estimates so that they 
comply with the mass and energy balances. The general dynamic estimation problem can be stated as 
(Rolandi, 2004): 
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The variable ϕ(⋅) represents the objective function to be optimized, and it is dependent on the 

model predictions, )(tz , the experimental  observations, )(~ tz , and the variance model, σ(t), which is at 
the same time a function of the parametric variables ω and γ, the model predictions and the experimental 
observations. F(⋅) represents the set of differential-algebraic equations (DAEs) with x and y denoting the 
differential (state) and algebraic variables respectively. I(⋅) denotes the initial conditions that must be 
satisfy by the model for the parametric, state, algebraic and input (u(t) and p) variables. The last four 
equations correspond to the upper and lower bound of the decision variables (θ, β, ω and γ).  
 

The objective function can take several forms depending on the nature of the mathematical 
model, and on the decision variables of interest. The latter will define the name given to the general 
problem stated by equations (4) to (8). For instance, when only the model parameters, θ, are taken into 
consideration the problem will be called parameter estimation; if the measurement biases, β, are the 
only decision variables involved, the problem will now be called gross error estimation. One of the most 
flexible objective functions used is the maximum likelihood function (which can be manipulated further 
to obtain the ordinary least square (OLS) or the weighted least square (WLS) functions): 
 

( )
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
++= ∑∑

NV

j

NM

k kj

kjkj
kj

j zz
Nttztz

2

,

,,2
,

~
ln)2ln(

2
1))(),(~),((

σ
σπσϕ          (5) 

 



The experimental observations, or measurements, )(~ tz , are related to the model prediction, or 
reconciled values )(tz  through a relationship of the form: 

βε ++= )()(~ tztz           (6) 
 

Where ε and β  represent the random errors and measurement bias correspondingly, and the latter 
is assumed to be constant for most practical applications. Hence, the measurement biases could be 
treated as parameters within the objective function. Furthermore, the estimation of the random errors, ε, 
should be included as decision variables in the general estimation problem defined by equation (4).  

 
Classical or traditional reconciliation assumes that the input variables are error-free, ε = 0, in which case 
a distinction between input (ip) and output (op) variables is necessary: 
 

ipipip zz β+= ~            (7) 
      opopopop zz βε ++= ~          (8) 

 
However, error-free input variables may lead to biased estimators if this assumption is not met 

(Albuquerque and Biegler, 1995). Therefore, the incorporation of measurement errors in the input 
variables has been studied (Britt and Luecke, 1973, Kim et al, 1990, Albuquerque et al, 1997, Kim et al 
1991, Albuquerque and Biegler, 1995) and was called error-in-variables method (EVM). Since error-
free input variables cannot be assumed in most chemical processes, it is important for a framework used 
by industry engineers to be in accordance to this demand.  
 

The iOpSS data reconciliation module possesses the flexibility to handle different estimation 
problems in both traditional and EVM reconciliation. Formulation of DR, parameter estimation and 
gross error estimation problems, or any combination of these activities, is possible upon request of the 
user.  
 
3.5 Implementation procedure 
 

Typically, an estimation problem is declared in gPROMS by means of the ESTIMATION and 
EXPERIMENT entities supported on the MODEL and PROCESS entities. As its name indicates, the 
MODEL entity provides the model equations against which the parameter estimation and data 
reconciliation are to be performed. The PROCESS entity provides initial values, and other information 
necessary for the problem to be well specified (i.e. degrees of freedom, initial states of transition 
networks and initial conditions). In the gPROMS language/architecture, the ESTIMATION entity 
describes the problem to solve, that is, the parametric variables/parameters to be estimated/decision 
variables, their bounds and the variance model of the measurement devices associated with experimental 
measurements. The EXPERIMENT entity contains all the measurements available for a given 
experimental run; the variance model can be specified here as well (gPROMS advanced user manual, 
2006). 

 
While parameter estimation activities are directly supported by gPROMS, traditional data 

reconciliation activities can be reformulated as a general estimation problem and, therefore, 
implemented and solved in gPROMS, as discussed in Rolandi (2004). On the other hand, the general 
EVM data reconciliation problem is not currently supported by the gPROMS language and, 
consequently, it was necessary to bend the language rules to succeed in the goal of using gPROMS as 
the modelling and solution engine (MSE) of this framework. Since data reconciliation is by itself an 



optimization activity, this concept/notion was used to reformulate the reconciliation problem using 
gPROMS OPTIMIZATION entity. Naturally, several inconveniences arose from this choice; one of 
them was the incorporation of the measurements in the problem definition since the optimization activity 
in gPROMS does not support the EXPERIMENT entity. Concurrently, the MODEL entity was also 
modified to account for the objective function, the measurements, errors, and biases, in such a way that 
it could be used by the remaining activities (simulation, parameter estimation, traditional data 
reconciliation, and optimization). 
 
The problem was solved in gPROMS by means of a sequential solution algorithm. Although at the 
moment the activities are performed assuming constant variance, the model can be extended to include 
other variance models. 

 
 
4. CASE STUDY: TWO CSTRS IN SERIES 
 
4.1 Problem description 
 

The process was initially proposed by Hennin (1991) and reproduced in Bahri (1995). It consists 
in two CSTRs connected in series, and an additional stream of fresh feed is mixed with the output 
stream of the first reactor to conform the feed to the second reactor, as shown in figure 5.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Case study: two CSTRs in series. 
 

The simple exothermic reaction A  B is occurring in both reactors. The process was assumed 
to be at constant density and well-mixed. The model is the following: 
 
Reaction rate:       Mass balance of species A: 
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Energy balance:      Overall mass balance: 
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Mass and energy balances in the mixer: 
 

221122 CQCQCQ ooinin +=  (13) 
221122 TQTQTQ ooinin +=  (14) 

 
Where Q is Volumetric flow rate (m3/h), T is Temperature (K), C is Concentration of species A 

(kmol/m3), Ua is Heat transfer coefficient (kcal/h.K), ΔHr is Heat of reaction (kcal/kmol), E is Activation 
energy  (kcal/kmol), R is Gas constant (kcal/kmol.K), ko is Reaction constant  (h-1), Cp is Heat capacity 
(kcal/kmol.K), ρ is Molar density (kmol/m3), V is Reactor volume (m3), and r is Reaction rate 
(kmol/m3.h).  

 
Table 1. Subscripts and superscripts 

Subscript  Superscript  
f Feed stream 1 Reactor 1 

in Input stream 2 Reactor 2 
o Output stream * Input variable 
c Coolant   

 
The process has 24 variables from which eight are input variables and four are state variables. 

The parameters of interest are the kinetic constant of reactor 1 (K1) and heat transfer coefficient of 
reactor 2 (Ua2). All variables were assumed to be measured. 
 

Once the model was implemented in gPROMS language, a simulation was performed for a total 
time of 15 hours with a reporting interval of 6 min. The values of the input variables used to simulate the 
process are listed next: 
 
Q1

in = 7 m3/h  Q1
c = 1  m3/h  T1

c = 283 K  Tf = 298 K 
Q2 = 2 m3/h  Q2

c = 2.5 m3/h  T2
c = 283 K  Cf = 10 kmol/m3 

 
And the parameters: 
 
Ua = 750 kcal/h.K   ko = 3.49308E7 h-1    E = 11.843 E3 kcal/kmol 
 

Noise was then added to the simulated data to account for random variations. This dataset was 
modified later to add biases in three output variables and two input variables, and a proportion of 3.3% 
of outliers in all variables (generated randomly from Gaussian distributions), creating six new datasets 
as detailed in table 2: 

 
Table 2. Datasets created and presence of measurement bias and outliers 

Biased variables Dataset 
name Q1

o T2
o C2

in Q1
c Tf 

Presence of 
outliers 

NB       
NBO      x 
B x x x    
BO x x x   x 



BA x x x x x  
BAO x x x x x x 

 
The magnitude of the biases and their relative values are shown in table 3. 
 

Table 3. Magnitude of measurement biases 
Variable 

name 
Bias 

magnitude 
Relative value 

(%)1 

Q1
o -1.0 20 

T2
o 12.0 4 

C2
in 0.9 10 

Q1
c 1.0 40 

Tf -10.0 4 
1 Reference value equal to the highest value reached by the  
variable during the time frame for time-varying variables or  

nominal value for time-invariant variables  
 

As indicated by Rolandi (2006), the discrete representation (by the raw data pool) of the transient 
behavior of the of process variables forces the reconstruction of their continuous trajectories 
(Reconstruction of process trajectories, RPT). Moreover, the dimensionality of the plant data set is 
important when simulating combined discrete/continuous processes, and it should be reduced whenever 
possible. Therefore, the parameterization strategy and the nominal interval window should be carefully 
selected so that the data follows the dynamic nature of the variables and the accuracy of the solution is 
not affected in a great extent. In this work, the datasets were averaged to have an experimental value 
every 30 minutes, reducing its dimension from 150 to 30 points. 

 
All outlier detection/filtering techniques were applied to each of the datasets containing outliers. 

The size of the moving window was 3 for the MM filter, 15 for the MMD and 5 for the modified MT 
filter. Each dataset was used in one or more activities according to the presence of biases, outliers or 
both, as indicated in table 4. The base case or case 0 corresponds to the reconciliation using the 
simulated dataset (NN) before introducing any error, bias or outlier.  

 
Table 4.  Datasets for traditional and EVM data reconciliation 

Case # Measurement biases to 
estimate Datasets 

Traditional EVM 

Parameters 
to estimate Q1

o T2
o C2

in Q1
c Tf 

  B, BO 
 B, BO 
 NB, NBO 
 BA 
 BA 

1 
2 
3 
-- 
-- 

2 
5 
1 
3 
4 

 
K1, Ua2 
none 
none 
K1, Ua2 

 
x 
x 
x 
x 

 
x 
x 
x 
x 

 
x 
x 
x 
x 

 
x 
x 

 
x 
x 

 
 
4.2 Results 
 
Data pre-processing 

The efficiency of the modified MMD method using both criteria (twice the MMD, and 0.5 time 
the MMD), is shown in table 5. It can be seen that the second criteria increases the detection rate by 
approximately 159%. It is important to highlight that the window size of 15 was selected as the best one 



after a series of trials previously performed. The efficiency as shown for the modified MMD is not 
suitable for the filters (MM, MT) because they change not only the outliers, but all the dataset. 
 

Table 5. Efficiency of outlier detection/rectification methods 

Method Efficiency 
(detected/total) 

Misidentification 
(detected but not 

outlier/total) 
Modified MMD 0.37 0 
Modified MMD criteria 
0.5 (MMD-0.5) 0.95 0 

 
Figure 6 shows the comparative behavior of the filtering techniques and the MMD method the 

state variable To
1. This is shown only for the NBO dataset since the other datasets behave in the same 

manner. A detailed section of the dataset is shown in figure 6a for a better picture. The results show that, 
in effect, the modified MMD has a lower performance than the MMD with a criterion of 0.5, and than 
the filtering techniques, which are able to clean more number of outliers. It can be seen that while the 
MM3 filter was able to bring all outliers to the bulk of the data, the modified MT filter was able only to 
reduce the magnitude of the outliers and degrading some of the data points following the outlier. This 
may be explained by taking into consideration the fact that the modified MT filter is based in an 
autoregressive model, which is a linear approximation, and therefore, may not be suitable for the model 
followed by this specific process. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Outlier detection/cleaning performance for T1
o (a)Complete dataset (b)Detail section 

 
 
Data reconciliation 

Table 6 shows the parameter and measurement bias estimates in the case of traditional data 
reconciliation for each case. It can be seen that the best estimates are obtained when no outliers were 
present (1 B and 2 B). If outliers were present, the MM3 filter and the MMD15-0.5 showed the best 
estimates. This is in agreement with the results for data pre-processing where these techniques presented 
a better performance than the other two methods.  

 
While the kinetic constant is estimated with great accuracy in the traditional data reconciliation, 

the heat transfer coefficient is not, especially in those cases where the measurement bias estimates 
deviate considerably from their true values (case 2). As expected, the estimates differ significantly from 
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their true values when outliers are present and no cleaning method is employed for both reconciliation 
techniques (1 BO, 2 BO). 

 
 

Table 6. Parameter and biases estimates in traditional data reconciliation 
Parameters Measurement biases Case File Method K1

o Ua2 Q1
O C2

IN T2
O 

B None   -0.995 0.896 11.783 
None     -0.924 1.153 0.000 
MM3     -1.007 0.897 11.709 

MMD15     -1.013 1.070 10.559 
MMD15-0.5     -0.993 0.900 11.837 

1 BO 

MT     -0.903 0.992 9.654 
B None 3.493E+07 727.872 -0.996 0.897 11.673 

None 3.480E+07 1190.366 -0.907 1.134 4.648 
MM3 3.493E+07 723.555 -1.005 0.897 11.588 

MMD15 3.493E+07 874.039 -0.918 1.075 10.873 
MMD15-0.5 3.493E+07 725.626 -0.990 0.899 11.723 

2 BO 

MT 3.492E+07 781.238 -0.920 0.998 9.991 
 

As observed in table 7, the EVM exactly estimates the bias in all of three output variables and 
presents acceptable results in the bias of input variables. The kinetic constant was estimated correctly 
except for those cases where outliers were present and no cleaning technique was used (4 BAO, 5 
BAO). However, the heat transfer coefficient was underestimated in all cases. 

 
Table 7. Parameter and biases estimates in EVM data reconciliation 

Parameters Biases Case File  Method K1
o Ua2 Q1

O C2
IN T2

O Tf Qc
1 

B none      -1.000 0.900 12.000     
none      -1.000 0.900 12.000     
MM3     -1.000 0.900 12.000     

MMD15     -1.000 0.900 12.000     
MMD15-0.5     -1.000 0.900 12.000     

2 BO 

MT     -1.000 0.900 12.000     
BA none      -1.000 0.900 12.000 -10.210 0.900 

none      -1.000 0.900 12.000 -9.398 0.900 
MM3     -1.000 0.900 12.000 -10.201 0.900 

MMD15     -1.000 0.900 12.000 -10.197 0.900 
MMD15-0.5     -1.000 0.900 12.000 -10.216 0.900 

3 BAO 

MT     -1.000 0.900 12.000 -9.651 0.900 
BA none  3.4937E+07 600 -1.000 0.900 12.000 -10.189 0.900 

none  3.4862E+07 600 -1.000 0.900 12.000 -9.221 0.900 
MM3 3.4937E+07 600 -1.000 0.900 12.000 -10.175 0.900 

MMD15 3.4937E+07 600 -1.000 0.900 12.000 -10.211 0.900 
MMD15-0.5 3.4937E+07 700 -1.000 0.900 12.000 -10.213 0.900 

4 BAO 

MT 3.4934E+07 600 -1.000 0.900 12.000 -9.640 0.900 
B none  3.4938E+07 700 -1.000 0.900 12.000     

none  3.4834E+07 700 -1.000 0.900 12.000     
MM3 3.4943E+07 700 -1.000 0.900 12.000     

5 
BO 

MMD15 3.4937E+07 700 -1.000 0.900 12.000     



MMD15-0.5 3.4942E+07 700 -1.000 0.900 12.000     
MT 3.4936E+07 700 -1.000 0.900 12.000     

 
  The values for the absolute errors are shown in tables 8 and 9 for the cases under study. The 
results presented in these tables confirm that the best results are obtained when no outliers were present 
(cases B and BA). When outliers were present, significant improvements on the absolute errors were 
observed for the MM filter and the modified MMD (MMD15-0.5). However, the norms are higher for 
the EVM so these trajectories are expected to deviate more from their true values.  

 

        Table 8. Absolute error for traditional data reconciliation 

Case File  Method L1 norm L2 norm 

B none  88.599 51.650 
none  5132.304 262884.542 
MM3 113.040 64.366 

MMD15 911.276 5125.541 
MMD15-0.5 138.504 353.426 

1 BO 

MT 1081.512 6664.863 
B none  88.126 48.787 

none  2202.266 29460.451 
MM3 111.070 61.122 

MMD15 936.207 5264.210 
MMD15-0.5 138.834 350.626 

2 BO 

MT 1077.610 6610.421 
 
 
 

    Table 9. Absolute error for EVM data reconciliation 

Case File  Method Error        
L1 norm 

Error         
L2 norm 

B none  672.951 1570.753 
none  3664.189 82292.733 
MM3 693.609 1685.537 

MMD15 1853.106 20993.941 
MMD15-0.5 722.313 2033.022 

2 BO 

MT 2248.561 23061.834 
BA none  929.723 3759.426 

none  3476.611 74004.600 
MM3 943.690 3849.409 

MMD15 1933.950 21563.256 
MMD15-0.5 994.692 4359.326 

3 BAO 

MT 2576.617 26709.173 
BA none  935.664 4465.523 

none  3457.352 73191.402 
MM3 953.148 4538.674 

MMD15 1982.884 23027.007 
MMD15-0.5 994.214 4522.045 

4 BAO 

MT 2628.957 28415.164 
B none  683.495 1767.854 

none  3645.476 82680.331 
MM3 698.964 1866.152 

5 
BO 

MMD15 1866.543 21444.510 



MMD15-0.5 733.556 2246.867 
MT 2267.301 23590.083 

 
The plant (uncleaned) vs. the reconciled data is shown in figures 7 to 10 for selected cases and 

the state variable T1
o. It can be observed that when no errors are considered in the input variables and no 

biases are present, the reconciled values for the traditional and the EVM data reconciliations are 
practically the same (Figure 7). On the other hand, when no errors are considered in the input variables, 
the reconciled values using traditional DDR are slightly better than those corresponding to the EVM 
reconciliation (see fig. 8). However, the trajectories of the reconciled data for all reconciliation cases are 
very similar when MMD15 or MT was used (see fig. 9).  

 
 

 
 
 
 
 
 
 
 
 
 

Figure 7. Reconciled data for case NB T1
o   

 
  
 
 
 
 
 
 
 
 
 
 
 

 
  Figure 8. Plant vs reconciled data for cases bias               Figure 9. Reconciled data for cases bias all  
                        (BO) MM3 of variable T1

o                                          (BO) MMD15 of variable T1
o 

 
 As it was expected from the data pre-processing module, the reconciled values are better for the 

datasets where the MM3 filter and the MMD15-0.5 were applied. This can also be seen from table 6, 
where the estimated parameters for the methods just mentioned, were closer to the nominal values.  
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Figure 10. Plant vs. reconciled data for T1
o , files BAO  MMD15-0.5  

 
 
5. CONCLUSIONS  
 
 Model-Centric Technologies (MCTs) have emerged as a powerful tool for the formulation and 
solution of model-based activities. Since the establishment of the CAPE community and with the 
emersion of MCTs, efforts towards the development of applications incorporating such features have 
increased. A novel framework for a unified and consistent formulation of model-based activities within 
a single environment initiated by Rolandi and Romagnoli (2006) is an excellent example of such efforts.  

 
Two major extensions of the work initiated by Rolandi and Romagnoli were developed. The first 

one corresponds to the implementation of a pre-processing module in which the outliers could be 
decreased or removed. The mean minimum distance (MMD) method and its extension, the moving 
median (MM) filter and the modified MT filter were discussed. It was shown that the MM filter presents 
better performance in the cleaning of outliers, followed by the MMD when the criterion for the 
identification of an outlier is lowered from 2 to 0.5 times de mean minimum distance. This value is then 
considered as a tuning parameter for the adjustment of the detection rate. Although the modified MT 
filter indeed reduces the magnitude of the outliers, it showed to be less effective than the MMD and MM 
for this particular process. The non-linearity of the model might cause this behavior. 
 

EVM (Error-in-variables method) dynamic data reconciliation was implemented as the first step 
towards the development of a more complete and robust framework for the definition of different 
model-based activities. The iOpSS in combination with gPROMS was able to adequately formulate and 
execute estimation and reconciliation activities for non-linear dynamic processes. Good measurement 
biases were estimated when estimation of parameters was not considered, and acceptable values were 
obtained when they were estimated in conjunction. It was shown that better estimates were obtained 
when the MM filter or the modified MMD method (criterion of 0.5 MMD) were used as cleaning 
techniques. When compared to the traditional data reconciliation, the EVM presents a decrease in the 
accuracy of parameter estimates although not in the measurement biases. Hence, the inclusion of robust 
methodologies should be considered as an additional extension to the framework. Another challenging 
task is the incorporation of capabilities for the formulation of on-line model-based control procedures. 
The former extension is currently being studied, and the latter is being considered for future work.  
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